

HUNT ENGINEERING
Chestnut Court, Burton Row,

Brent Knoll, Somerset, TA9 4BP, UK
Tel: (+44) (0)1278 760188,
Fax: (+44) (0)1278 760199,

Email: sales@hunteng.co.uk
http://www.hunteng.co.uk
http://www.hunt-dsp.com

HUNT ENGINEERING

VHDL Image Processing
Source Modules

REFERENCE MANUAL

Document Rev C
J. Maddocks & R. Williams 05/07/2006

2 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

COPYRIGHT
This documentation and the product it is supplied with are Copyright HUNT
ENGINEERING 2006. All rights reserved. HUNT ENGINEERING maintains a policy
of continual product development and hence reserves the right to change product
specification without prior warning.

WARRANTIES LIABILITY and INDEMNITIES
HUNT ENGINEERING warrants the hardware to be free from defects in the material and
workmanship for 12 months from the date of purchase. Product returned under the terms
of the warranty must be returned carriage paid to the main offices of HUNT
ENGINEERING situated at BRENT KNOLL Somerset UK, the product will be repaired
or replaced at the discretion of HUNT ENGINEERING.

Exclusions - If HUNT ENGINEERING decides that there is any evidence of
electrical or mechanical abuse to the hardware, then the customer shall have no
recourse to HUNT ENGINEERING or its agents. In such circumstances HUNT
ENGINEERING may at its discretion offer to repair the hardware and charge for
that repair.

Limitations of Liability - HUNT ENGINEERING makes no warranty as to the
fitness of the product for any particular purpose. In no event shall HUNT
ENGINEERING’S liability related to the product exceed the purchase fee actually
paid by you for the product. Neither HUNT ENGINEERING nor its suppliers
shall in any event be liable for any indirect, consequential or financial damages
caused by the delivery, use or performance of this product.

Because some states do not allow the exclusion or limitation of incidental or consequential
damages or limitation on how long an implied warranty lasts, the above limitations may not
apply to you.

TECHNICAL SUPPORT

Technical support for HUNT ENGINEERING products should first be obtained from
the comprehensive Support section www.hunteng.co.uk/support/index.htm on the HUNT
ENGINEERING web site. This includes FAQs, latest product, software and
documentation updates etc. Or contact your local supplier - if you are unsure of details
please refer to www.hunteng.co.uk for the list of current re-sellers.

HUNT ENGINEERING technical support can be contacted by emailing
support@hunteng.demon.co.uk, calling the direct support telephone number +44 (0)1278
760775, or by calling the general number +44 (0)1278 760188 and choosing the technical
support option.

N.B. Technical support for the Image Processing VHDL source modules is
provided for users of HUNT ENGINEERING hardware ONLY.

http://www.hunteng.co.uk/support/support.htm
www.hunteng.co.uk

3 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

TABLE OF CONTENTS
INTRODUCTION.. 5

FUNCTION OVERVIEW... 6

ARCHITECTURE OF THE VHDL BLOCKS... 7
FUNCTION CLASSES .. 7
FIXED CO-EFFICIENT FUNCTIONS.. 7
VARIABLE CO-EFFICIENT FUNCTIONS... 8
CONVOLUTION FUNCTIONS ... 8
GENERIC OPTIONS... 9
UNDERSTANDING BUS WIDTHS... 10
COMPONENT LATENCY AND OUTPUT CONTROLS .. 10
DATA FORMAT.. 10

INPUT AND OUTPUT OF IMAGE DATA .. 11
REGION OF INTEREST .. 11
IMAGE CAPTURE AND IMAGE PROCESSING.. 11

IMAGE FUNCTION LIMITATIONS... 12
FPGA RESOURCES – MULTIPLIERS AND BLOCK RAMS ... 12
FPGA PERFORMANCE... 12

IMAGE PROCESSING EXAMPLE.. 13

FUNCTION LIST .. 14
FIXED CO-EFFICIENT FUNCTIONS .. 14
VARIABLE CO-EFFICIENT FUNCTIONS ... 14
CONVOLUTION FUNCTIONS ... 15

FUNCTION DESCRIPTIONS ... 16
FIXED CO-EFFICIENT FUNCTIONS .. 16

AddK : Add constant to each pixel .. 16
SubK : Subtract constant from each pixel ... 17
MpyK : Multiply constant with each pixel ... 18
AndK : AND constant with each pixel ... 19
OrK : OR constant with each pixel.. 20
XorK : XOR constant with each pixel.. 21
RShK : Right shift pixel ... 22
LShK : Left shift pixel .. 23
Invert : Invert each pixel ... 24
Square : Square each pixel.. 25
FillK : Fill pixel with constant... 26
FillRamp : Fill image with ramp... 27

VARIABLE CO-EFFICIENT FUNCTIONS ... 28
AddImage : Add two images.. 28
SubImage : Subtract two images ... 29
MpyImage : Multiply two images .. 30
AndImage : AND two images .. 31
OrImage : OR two images... 32
XorImage : XOR two images ... 33

CONVOLUTION FUNCTIONS ... 34
Convolve : Perform convolution with 3x3 window.. 36
Convolve5x5 : Perform convolution with 5x5 window.. 39
Implementing Larger Convolutions... 43
When to use off chip memory... 43

4 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

FPGA RESOURCES USED.. 44

PERFORMANCE .. 46

DEFAULT COMPONENT SETTINGS AND LATENCY 48

TECHNICAL SUPPORT.. 49

5 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Introduction

HUNT ENGINEERING provides families of HERON modules that have FPGAs, often
combined with some interface capability. The HERON-FPGA family in particular provides
an FPGA along with a large number of signals routed to general-purpose connectors. These
modules are suitable for connecting to digital cameras, where the control of the camera and
image capture can be performed by the FPGA fitted to the module.

The HERON-FPGA range of modules is therefore highly suited to performing image
processing on data directly received from a camera.

HUNT ENGINEERING also provide VHDL source to assist in the development of
applications for HERON-FPGA modules. This VHDL source includes a set of VHDL
Image Processing Source Modules that are intended to make the task of building an imaging
system quicker and easier. As the VHDL source is made available to users of HUNT
ENGINEERING boards, this allows the functions to be extended and modified as
necessary.

The components provided in the Image Processing Source Modules are designed to be
drop-in modules that use the Hunt Engineering pixel pipeline format to interface with
adjacent components. They are intended to perform many of the common functions used
in image processing such as image subtraction and convolution.

Due to the highly parallel nature of an FPGA and the large amount of concurrent IO
provided by the HERON–FPGA modules, image processing functions can be performed at
pixel rate.

6 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Function Overview

The VHDL Image Processing Source Modules are ideal for image processing applications,
providing optimised functions for many common operations in imaging. Each VHDL
function provided is scalable and flexible, and provided as VHDL source that can be edited
if required.

The VHDL imaging functions when mapped to the architecture of a Xilinx FPGA allow
image operations to be performed at a pixel rate. That is, the time taken to calculate a new
value for one pixel in an image is no greater than the pixel clock period for that system. In
comparison, when performing the same operation on a DSP several system clock cycles
may be required to calculate each individual pixel result.

The VHDL Imaging Processing functions are organised as separate VHDL entities. The
VHDL entities are grouped together in separate VHDL source files according to their
function type. Each separate entity performs one particular image processing function.

For each image processing function, the HUNT ENGINEERING Pixel Pipeline Format is
used. This enables components to be connected together regardless of the previous or
subsequent operations. The data inputs and outputs are scalable so that no data loss in the
pipeline is necessary.

To use the VHDL entities supplied all that is required is to add the appropriate source
module to your VHDL project and instantiate the entity you wish to use. Having done the
next step is to supply data to that entity in the format described in this document. The
resulting output data from that entity should then be connected to the next stage in the
image processing pipeline.

7 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Architecture of the VHDL Blocks

Function Classes

When processing an image, there are several different kinds of mathematical operation that
could be performed, each with quite different requirements on how pixels are used.

The simplest type of operation is to perform one fixed operation equally across all pixels
within an image. For example, to brighten an image one fixed value may be added to all
pixels within the image.

The second type of operation is to perform one particular mathematical operation on each
pixel but using a different value depending on the position of that pixel in the image. An
example of this would be adding two images together, where the addition value for a pixel
in image A is the value of the corresponding pixel in the same position in image B.

The third type of operation is convolution. This is a neighbourhood processing operation in
that several pixels within a window all contribute mathematically to the result for one pixel.
This type of processing would be used to perform functions such as edge detection or
softening and blurring of an image for example.

With several different types of operation possible the VHDL Image Processing Source has
been organised into three distinct function classes.

• FIXED CO-EFFICIENT OPERATORS: Functions that perform the same
operation with a fixed constant for every pixel in a frame

• VARIABLE CO-EFFICIENT OPERATORS: Functions that perform the same
operation with a varying value for every pixel in a frame

• CONVOLUTION OPERATORS: Functions that perform convolution on a frame

Fixed Co-Efficient Functions

The following diagram shows the architecture of each function in the Fixed Co-efficient
class. For each function, pixel data is provided on Port A and operated against the fixed
value supplied on the K input. The result is output as shown on the right hand edge of the
diagram.

fixed
co-efficient

function

P

O

R

T

A
K

Data (N bits)

EOL

EOF

DVALID

Constant

Data

(N bits)

(N bits)

EOL

EOF

DVALID

8 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Variable Co-Efficient Functions

The following diagram shows the architecture of each function in the Variable Co-efficient
class. For each function, pixel data is provided on Port A and operated against the data
received on Port B. The result is output as shown on the right hand edge of the diagram.

Data (32 bits)

variable
co-efficient

function

PORT B

P

O

R

T

A

Data (N bits)

EOL

EOF

DVALID

Data (N bits)

EOL

EOF

DVALID

Pixel
Request

Convolution Functions

The following diagram shows the architecture of each function in the Convolution class.
For each function, pixel data is provided on Port A. The result is output as shown on the
right hand edge of the diagram.

convolution
function

P

O

R

T

A

Data (N bits)

EOL

EOF

DVALID

EOL

EOF

DVALID

Data (N bits)

The input ports, Port A, for each component and the output ports work using the Pixel
Pipeline Format.

The pixel pipeline format requires there be three control signals present, End Of Line
(EOL), End Of Frame (EOF), and Data Valid (DVALID). The EOL signal is active high
and asserted at a time following the last pixel of a line to indicate the end of that line. The
EOF signal is active high and asserted at a time following the last pixel of a frame to
indicate the end of that frame. The EOL and EOF signals must not be high at the same
time. DVALID is held high while the data on the port is valid.

In addition to these three signals the pixel pipeline format requires a pixel strobe to be
present. This is a free running clock driven by the camera pixel clock. All of the image
processing functions work on the rising edge of the pixel clock.

For a more complete discussion of the Pixel Pipeline Format, please refer to the relevant
section at the end of the Camera-Link Camera Interface document provided on the HUNT
ENGINEERING CD and web-site.

9 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Generic Options

The VHDL Image Processing functions have various generic options as discussed below.

Synchronous (Fixed co-efficient functions only): This is a Boolean option and is set to
true by default. It controls whether a registered or unregistered version of the component is
used.

N: This option is an integer that controls the width of the data bus. Its default value is 32.

StopAtZero (Subtract functions only): This is used to control whether when subtracting
the answer will wrap around e.g. 0x00000002 – 0x00000004 = 0xFFFFFFFE or

0x00000002 – 0x00000004 = 0x00000000

It defaults to true.

FillWithOnes (Shift functions only): This Boolean option controls whether the shift
operators introduce zeros or ones. When set to true, will fill with ‘1’, when set to false will
fill with ‘0’. This option defaults to false.

The following example shows an instantiation of the component SUBK. In this example
the data width is set to 32, the asynchronous version will be used, and the component will
not wrap around for subtraction.

Figure 1 - Example of setting generic options

10 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Understanding Bus Widths

When using each of the image processing functions, you need to consider the appropriate
widths of the data buses you connect to the inputs and outputs of each function.

All of the functions provide input data buses and output data buses that are the same size,
with this size being set by the generic N.

For logical operations such as ‘AND’ and ‘OR’, the size of the result cannot change from
the size of the original input data. For arithmetic operations however, such as ‘ADD’ and
‘MPY’, the internal result will grow. This internal result is then resized to match the output
data bus size set by the generic N.

For example, using the addition functions with N set to 8, any internal result greater than
255 would be set to 255. This resizing is done because when you are creating an 8-bit data
processing pipeline it is important to correctly resize the result at each stage in the pipeline.

For those cases where you would like to allow the result to grow you simply need to specify
a larger value for N and pad the top of the input values with 0. For example, to allow an 8-
bit addition to grow to a 9-bit result, you would simply need to set N to 9, and increase the
size of the input data bus by one bit. The top bit of this new input data bus would then be
set to 0. The output data results would become 9-bit values.

In addition to the input data and output data buses some components provide a K input
port and some components provide a Port B.

For the Fixed Co-efficient functions, the K input port width will always match that set by
the generic N.

For the Variable Co-efficient functions, the Port B data bus is always 32 bits as it is
intended that these components source their Port B data from the 32-bit SDRAM interface
of compatible HERON-FPGA modules. However, it would also be perfectly valid to
source the second data stream for Port B from any other source such as a ROM made from
internal Block RAM.

Component Latency and Output Controls

The control signals output by each function take into account the latency of operation
inside the component. For example if the processing taking place on the data takes two
clock cycles then the control signals will be delayed by two clock cycles within the
component. The latency of each component differs and can be found towards the end of
this document.

Data Format

For all functions included in the VHDL Image Processing Source Modules the input data
buses and output data buses used unsigned data representation.

If there is a signed operation inherently performed by the component, for example where a
signed Xilinx hardware multiplier is used inside a component implementation, a sign
conversion is performed on the input data bus and output data bus. When this is done the
result is unsigned data buses on the ports of the function with signed data buses internally.

11 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Input and Output of Image Data

The VHDL Image Processing Source Modules provide a set of functions to perform many
standard image processing operations on image data. For any application that is using the
image processing functions there will also need to be some associated logic that is
presenting data for processing and logic for storing or outputting the results.

The most obvious source for image data is a camera. Available on the HUNT
ENGINEERING CD and web-site are examples for Camera-Link cameras. These
examples provide all of the logic necessary to receive data from appropriate digital cameras.
The examples also include a few other standard functions such as region of interest and
frame control.

Other sources for camera data include external SDRAM interfaces available on several
HERON-FPGA modules, or data provided over a HERON FIFO connection.

For the results of the image processing operation, again the external SDRAM interface may
be used, or the data may be transmitted through a HERON FIFO to another HERON
module or the Host interface.

When using the external SDRAM interface of certain HERON-FPGA modules, there are
several key points to consider that include how images are organised in memory and how
the memory is accessed in a way that suits the format of the Image Processing functions. All
of these issues are discussed in the document ‘Using the off-chip SDRAM for Image
Processing on HERON-FPGA Modules’ which can be found on the HUNT
ENGINEERING CD or web-site.

Region of Interest

It is common for an image processing application to perform processing on a small window
rather than on the whole image. In reducing the image processing to just a selected area of
image, a region of interest is used to directly specify the area to work on.

A region of interest function is provided as part of the digital camera examples for Camera-
Link cameras. This region of interest function works with the same Pixel Pipeline Format as
the Image Processing functions, and can be easily incorporated into the same VHDL
project.

Image Capture and Image Processing

The most common situation for image processing with HERON-FPGA modules is to
perform the camera interfacing and image processing together.

In fact, any of the standard Camera-Link examples may be used as a starting point for
development. The Pixel Pipeline Format being common to both sets of logic means that
combining image capture functions with image processing functions is extremely straight-
forward.

In doing so you will already have a project that is set up to correctly receive data from a
digital camera. To this can be added the appropriate image processing functions to further
process the camera data.

12 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Image Function Limitations

The only limitations that apply to the Image Processing Source Modules are that of available
FPGA resources and their speed of operation.

FPGA Resources – Multipliers and Block RAMs

For each function a differing number of FPGA resources will be used and a different
operating speed will be possible. For the majority of functions the resources used simply
include Look-Up-Tables (LUTs) and registers. However, several key functions will
potentially make use of the Xilinx built-in hardware multipliers. Convolution functions in
particular may also require the use of Xilinx Block RAM.

For any particular Xilinx device there will be a fixed, finite number of multipliers and Block
RAMs available. When using the Image Processing functions it is important to know how
many of each of these resources will be used for each operation. In order to calculate the
resources that will be used you should refer to the table towards the end of this document
for details of the resources used by each function.

FPGA Performance

All of the components supplied as part of the VHDL Image Processing Source Modules are
intended to be run from one system-wide Pixel Clock. For each individual application the
maximum frequency of the Pixel Clock will be governed by the slowest operation
performed in the pipeline.

For many of the components, it is difficult to provide a complete set of performance figures
as there are many issues that will affect the overall performance. For example, by varying
the generic N of each component, the overall performance will drop as wider and wider
data operations are performed.

In addition, many components may be pipelined together. When doing this the Pixel Clock
rate will relate to the number of stages of maths performed between one register stage in
the pipeline and the next. For this reason, the synchronous/asynchronous generic has been
provided so that register stages can be introduced at key points in the pipeline in order to
increase the operation frequency.

For a guide to the performance that can be expected from each function, please refer to the
performance table at the end of this document.

13 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Image Processing Example

Provided on the HUNT ENGINEERING CD and web-site is an Imaging Demo that takes
data from a digital camera and performs several image processing functions before
transmitting the new image data to the host for display on the PC monitor.

This example can be used as a starting point for the development of an image processing
application. Alternatively, the Camera-Link example IP may be used as a starting point, with
the required Image Processing functions instantiated as discussed in this document.

14 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Function List

Fixed Co-efficient Functions

AddK Add a constant to each pixel

SubK Subtract a constant from each pixel

MpyK Multiply constant with each pixel

AndK AND a constant with each pixel

OrK OR a constant with each pixel

XorK XOR a constant with each pixel

RShK Right shift each pixel a number of positions

LShK Left shift each pixel a number of positions

Invert Invert each pixel

Square Square each pixel

FillK Fill each pixel with same constant

FillRamp Fill image with vertical ramps

Variable Co-efficient Functions

AddImage Add two images

SubImage Subtract two images

MpyImage Multiply two images

AndImage AND two images

OrImage OR two images

XorImage XOR two images

15 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Convolution Functions

Convolve Performs a convolution with a 3x3 window

Convolve5x5 Performs a convolution with a 5x5 window

16 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Function Descriptions

Fixed Co-efficient Functions

AddK : Add constant to each pixel
 Entity ADDK is
 Generic (
 Synchronous : boolean := True;
 N : integer := 32
);
 Port (
 DATA_IN : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 K_IN : in std_logic_vector(N - 1 downto 0)
);
 end ADDK;

Using the ADDK Component

The AddK component takes a stream of camera data in Pixel Pipeline Format. This stream
must be presented to the inputs DATA_IN, DVALID_IN, EOL_IN and EOF_IN.

The constant to be added to each pixel value must be presented to the K_IN input.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

If the Synchronous generic is set to true (the default value) the result is registered
internally before being output by the component. If the Synchronous generic is set to
false the function will be implemented as a purely combinatorial function.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_IN and K_IN buses will equal the value N in bits. The DATA_OUT width will also be
set to N.

Output data results are rounded to ensure data does not exceed the maximum output value
for the DATA_OUT bus. For example, with N set to 8 all internal results greater than 255
would be set to 255.

17 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

SubK : Subtract constant from each pixel
 Entity SUBK is
 Generic (
 Synchronous : boolean := True;
 StopAtZero : boolean := True;
 N : integer := 32
);
 Port (
 DATA_IN : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 K_IN : in std_logic_vector(N - 1 downto 0)
);
 end SUBK;

Using the SubK Component

The SubK component takes a stream of camera data in Pixel Pipeline Format. This stream
must be presented to the inputs DATA_IN, DVALID_IN, EOL_IN and EOF_IN.

The constant to be subtracted from each pixel value must be presented to the K_IN input.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

If the Synchronous generic is set to true (the default value) the result is registered
internally before being output by the component. If the Synchronous generic is set to
false the function will be implemented as a purely combinatorial function.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_IN and K_IN buses will equal the value N in bits. The DATA_OUT width will also be
of width N.

The StopAtZero generic option will dictate what will happen if the result of the
subtraction is less than one. If the result of a subtraction operation is less than zero and this
option is set to true then the answer will be zero. If the result of the subtraction is less than
zero and this option is set to false then the answer will wrap around.

 If StopAtZero is true then 0x0002 – 0x0004 will result in 0x0000

 If StopAtZero is false then 0x0002 – 0x0004 will result in 0xFFFE

18 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

MpyK : Multiply constant with each pixel
 Entity MPYK is
 Generic (
 Synchronous : boolean := True;
 N : integer := 18
);
 Port (
 DATA_IN : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 K_IN : in std_logic_vector(N - 1 downto 0)
);
 end MPYK;

Using the MpyK Component

The MpyK component takes a stream of camera data in Pixel Pipeline Format. This stream
must be presented to the inputs DATA_IN, DVALID_IN, EOL_IN and EOF_IN.

The constant for multiplication must be presented to the K_IN input. The result is output
in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT, EOL_OUT, and
EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

If the Synchronous generic is set to true (the default value) the result is registered
internally before being output by the component. If the Synchronous generic is set to
false the function will be implemented as a purely combinatorial function.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_IN, K_IN and DATA_OUT buses will equal the value N in bits. Output data results are
rounded to ensure data does not exceed the maximum output value for the DATA_OUT bus.
For example, with N set to 8 all internal results greater than 255 would be set to 255.

The multiplier component is a little more complex than the others in that the size of the
input bus decides what sort of implementation will be used. The Xilinx Virtex II FPGA has
built in 18 x 18 multipliers. If N is defined as being 18 or less then the MPYK component
will use these built in multipliers. If however N is defined as being greater than 18 then
COREGEN IP multipliers are used instead. The two multipliers included with these
components are a 24 x 24 and a 32 x 32. The reason you would not automatically want to
use the largest multiplier is down to the amount of resources used. As a guide, the 24 x 24
COREGEN IP multiplier using look up tables (LUT’s) uses 481 LUT’s and 614 Flip Flops,
4% and 6% respectively of the total resources available on a 1M gate part. The 32 x 32
COREGEN IP multiplier uses 1080 LUT’s and 1235 Flip Flops, 10% and 12% respectively
of the total resources available on a 1M-gate part.

19 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

AndK : AND constant with each pixel
 Entity ANDK is
 Generic (
 Synchronous : boolean := True;
 N : integer := 32
);
 Port (
 DATA_IN : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 K_IN : in std_logic_vector(N - 1 downto 0)
);
 end ANDK;

Using the AndK Component

The AndK component takes a stream of camera data in Pixel Pipeline Format. This stream
must be presented to the inputs DATA_IN, DVALID_IN, EOL_IN and EOF_IN.

The constant for the logical operation must be presented to the K_IN input.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

If the Synchronous generic is set to true (the default value) the result is registered
internally before being output by the component. If the Synchronous generic is set to
false the function will be implemented as a purely combinatorial function.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_IN and K_IN buses will equal the value N in bits. The DATA_OUT width will also be
N bits wide.

20 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

OrK : OR constant with each pixel
 Entity ORK is
 Generic (
 Synchronous : boolean := True;
 N : integer := 32
);
 Port (
 DATA_IN : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 K_IN : in std_logic_vector(N - 1 downto 0)
);
 end ORK;

Using the OrK Component

The OrK component takes a stream of camera data in Pixel Pipeline Format. This stream
must be presented to the inputs DATA_IN, DVALID_IN, EOL_IN and EOF_IN.

The constant for the logical operation must be presented to the K_IN input.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

If the Synchronous generic is set to true (the default value) the result is registered
internally before being output by the component. If the Synchronous generic is set to
false the function will be implemented as a purely combinatorial function.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_IN and K_IN buses will equal the value N in bits. The DATA_OUT width will also be
N bits wide.

21 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

XorK : XOR constant with each pixel
 Entity XORK is
 Generic (
 Synchronous : boolean := True;
 N : Integer := 32
);
 Port (
 DATA_IN : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 K_IN : in std_logic_vector(N - 1 downto 0)
);
 end XORK;

Using the XOrK Component

The XorK component takes a stream of camera data in Pixel Pipeline Format. This stream
must be presented to the inputs DATA_IN, DVALID_IN, EOL_IN and EOF_IN.

The constant for the logical operation must be presented to the K_IN input.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

If the Synchronous generic is set to true (the default value) the result is registered
internally before being output by the component. If the Synchronous generic is set to
false the function will be implemented as a purely combinatorial function.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_IN and K_IN buses will equal the value N in bits. The DATA_OUT width will also be
N bits wide.

22 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

RShK : Right shift pixel
 Entity RSHK is
 Generic (
 Synchronous : boolean := True;
 FillWithOnes : boolean := False;
 N : integer := 32
);
 Port (
 DATA_IN : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 K_IN : in std_logic_vector(N - 1 downto 0)
);
 end RSHK;

Using the RShK Component

The RShK component takes a stream of camera data in Pixel Pipeline Format. This stream
must be presented to the inputs DATA_IN, DVALID_IN, EOL_IN and EOF_IN.

The constant defining the number of places to be shifted must be presented to the K_IN
input. This component can shift by up to 32 places.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

If the Synchronous generic is set to true (the default value) the result is registered
internally before being output by the component. If the Synchronous generic is set to
false the function will be implemented as a purely combinatorial function.

The FillWithOnes generic controls whether ones or zeros will be introduced to the left
hand side. When set to true, ones will be introduced. When set to false, zeros will be
introduced.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_IN and K_IN buses will equal the value N in bits. The DATA_OUT width will also be
N bits wide.

This component takes the form of a barrel shifter. This allows the number of places to be
shifted to be altered every cycle if it was so desired.

23 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

LShK : Left shift pixel
 Entity LSHK is
 Generic (
 Synchronous : boolean := True;
 FillWithOnes : boolean := False;
 N : integer := 32
);
 Port (
 DATA_IN : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 K_IN : in std_logic_vector(N - 1 downto 0)
);
 end LSHK;

Using the LShK Component

The LShK component takes a stream of camera data in Pixel Pipeline Format. This stream
must be presented to the inputs DATA_IN, DVALID_IN, EOL_IN and EOF_IN.

The constant defining the number of places to be shifted must be presented to the K_IN
input. This component can shift by up to 32 places.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

If the Synchronous generic is set to true (the default value) the result is registered
internally before being output by the component. If the Synchronous generic is set to
false the function will be implemented as a purely combinatorial function.

The FillWithOnes generic controls whether ones or zeros will be introduced to the right
hand side. When set to true, ones will be introduced. When set to false, zeros will be
introduced.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_IN and K_IN buses will equal the value N in bits. The DATA_OUT width will also be
N bits wide.

Output data results are rounded to ensure data does not exceed the maximum output value
for the DATA_OUT bus. For example, with N set to 8 all internal results greater than 255
would be set to 255.

This component takes the form of a barrel shifter. This allows the number of places to be
shifted to be altered every cycle if it was so desired.

24 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Invert : Invert each pixel
 Entity invert is
 Generic (
 Synchronous : boolean := True;
 N : integer := 32
);
 Port (
 DATA_IN : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic
);
 end invert;

Using the Invert Component

The Invert component takes a stream of camera data in Pixel Pipeline Format. This stream
must be presented to the inputs DATA_IN, DVALID_IN, EOL_IN and EOF_IN.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

If the Synchronous generic is set to true (the default value) the result is registered
internally before being output by the component. If the Synchronous generic is set to
false the function will be implemented as a purely combinatorial function.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_IN and K_IN buses will equal the value N in bits. The DATA_OUT width will also be
N bits wide.

25 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Square : Square each pixel
 Entity SQUARE is
 Generic (
 Synchronous : boolean := True;
 N : integer := 18
);
 Port (
 DATA_IN : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic
);
 end SQUARE;

Using the Square Component

The Square component takes a stream of camera data in Pixel Pipeline Format. This stream
must be presented to the inputs DATA_IN, DVALID_IN, EOL_IN and EOF_IN.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

If the Synchronous generic is set to true (the default value) the result is registered
internally before being output by the component. If the Synchronous generic is set to
false the function will be implemented as a purely combinatorial function.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_IN and K_IN buses will equal the value N in bits. The DATA_OUT width will also be
N bits wide.

Output data results are rounded to ensure data does not exceed the maximum output value
for the DATA_OUT bus. For example, with N set to 8 all internal results greater than 255
would be set to 255.

The square component will instantiate an instance of the MpyK component so the same
resource usage will apply for the Square component as for the MpyK component.

26 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

FillK : Fill pixel with constant
 Entity FILLK is
 Generic (
 N : integer := 32
);
 Port (
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 K_IN : in std_logic_vector(N - 1 downto 0)
);
 end FILLK;

Using the FillK Component

The Fillk component takes a stream of camera data in Pixel Pipeline Format. This stream
must be presented to the inputs DVALID_IN, EOL_IN and EOF_IN. This component only
uses the control signals from the pixel pipeline format data stream and replaces the data part
of the data stream with the constant value.

This function is useful for testing.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The constant to be output must be presented to the input K_IN which is N bits wide.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_IN and K_IN buses will equal the value N in bits. The DATA_OUT width will also be
N bits wide.

27 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

FillRamp : Fill image with ramp
 Entity FILLRAMP is
 Generic (
 N : integer := 32
);
 Port (
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 K_IN : in std_logic_vector(N - 1 downto 0)
);
 end FILLRAMP;

Using the FillRamp Component

The FillRamp component takes a stream of camera data in Pixel Pipeline Format. This
stream must be presented to the inputs DVALID_IN, EOL_IN and EOF_IN. The data in the
pixel pipeline format will be replaced by a ramp from zero up to the value dictated by the K
value. This component is useful for testing.

The constant that is the limit value of the ramp must be presented to the K_IN input.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_IN and K_IN buses will equal the value N in bits. The DATA_OUT width will also be
N bits wide.

28 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Variable Co-efficient Functions

AddImage : Add two images
 Entity ADDImage is
 Generic (
 N : integer := 32
);
 Port (
 DATA_A : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_A : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 REQ_PIXEL : out std_logic;
 DATA_B : in std_logic_vector(N - 1 downto 0)
);
 end ADDImage;

Using the AddImage Component

The AddImage component takes a stream of camera data in Pixel Pipeline Format. This
stream must be presented to the inputs DATA_A, DVALID_A, EOL_IN and EOF_IN.

The AddImage component also sources a second data stream from the DATA_B input. This
input is intended to source its data from a FIFO or other similar storage. When a piece of
data is required on the DATA_B input the REQ_PIXEL signal will be asserted. The data
should be present on the DATA_B port the following cycle.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_A and DATA_B buses will equal the value N in bits. The DATA_OUT width will also be
set to N bits.

Output data results are rounded to ensure data does not exceed the maximum output value
for the DATA_OUT bus. For example, with N set to 8 all internal results greater than 255
would be set to 255.

29 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

SubImage : Subtract two images
 Entity SUBImage is
 Generic (
 StopAtZero : boolean := True;
 N : integer := 32
);
 Port (
 DATA_A : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_A : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 REQ_PIXEL : out std_logic;
 DATA_B : in std_logic_vector(N - 1 downto 0)
);
 end SUBImage;

Using the SubImage Component

The SubImage component takes a stream of camera data in Pixel Pipeline Format. This
stream must be presented to the inputs DATA_A, DVALID_A, EOL_IN and EOF_IN.

The SubImage component also sources a second data stream from the DATA_B input. This
input is intended to source its data from a FIFO or other similar storage. When a piece of
data is required on the DATA_B input the REQ_PIXEL signal will be asserted. The data
should be present on the DATA_B port the following cycle.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_A and DATA_B buses will equal the value N in bits. The DATA_OUT width will also be
N bits wide.

The StopAtZero generic (set to true by default) option will dictate what will happen if
the result of the subtraction is less than one. If the result of a subtraction operation is less
than zero and this option is set to true then the answer will be zero. If the result of the
subtraction is less than zero and this option is set to false then the answer will wrap around.

 If StopAtZero is true then 0x0002 – 0x0004 will result in 0x0000

 If StopAtZero is false then 0x0002 – 0x0004 will result in 0xFFFE

30 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

MpyImage : Multiply two images
 Entity MPYImage is
 Generic (
 N : integer := 18
);
 Port (
 DATA_A : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_A : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 REQ_PIXEL : out std_logic;
 DATA_B : in std_logic_vector(N - 1 downto 0)
);
 end MPYImage;

Using the MpyImage Component

The MpyImage component takes a stream of camera data in Pixel Pipeline Format. This
stream must be presented to the inputs DATA_A, DVALID_A, EOL_IN and EOF_IN.

The MpyImage component also sources a second data stream from the DATA_B input. This
input is intended to source its data from a FIFO or other similar storage. When a piece of
data is required on the DATA_B input the REQ_PIXEL signal will be asserted. The data
should be present on the DATA_B port the following cycle.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_A, DATA_B and DATA_OUT buses will equal the value N in bits. Output data results
are rounded to ensure data does not exceed the maximum output value for the DATA_OUT
bus. For example, with N set to 8 all internal results greater than 255 would be set to 255.

The multiplier component is a little more complex than the others in that the size of the
input bus decides what sort of implementation will be used. The Xilinx Virtex II FPGA has
built in 18 x 18 multipliers. If N is defined as being 18 or less then the MPYImage
component will use these built in multipliers. If however N is defined as being greater than
18 then COREGEN IP multipliers are used instead. The two multipliers included with
these components are a 24 x 24 and a 32 x 32. The reason you would not automatically
want to use the largest multiplier is down to the amount of resources used. As a guide, the
24 x 24 COREGEN IP multiplier using look up tables (LUT’s) uses 481 LUT’s and 614
Flip Flops, 4% and 6% respectively of the total resources available on a 1M gate part. The
32 x 32 COREGEN IP multiplier uses 1080 LUT’s and 1235 Flip Flops, 10% and 12%
respectively of the total resources available on a 1M-gate part.

31 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

AndImage : AND two images
 Entity ANDIMAGE is
 Generic (
 N : integer := 32
);
 Port (
 DATA_A : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_A : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 REQ_PIXEL : out std_logic;
 DATA_B : in std_logic_vector(N - 1 downto 0)
);
 end ANDIMAGE;

Using the AndImage Component

The AndImage component takes a stream of camera data in Pixel Pipeline Format. This
stream must be presented to the inputs DATA_A, DVALID_A, EOL_IN and EOF_IN.

The AndImage component also sources a second data stream from the DATA_B input. This
input is intended to source its data from a FIFO or other similar storage. When a piece of
data is required on the DATA_B input the REQ_PIXEL signal will be asserted. The data
should be present on the DATA_B port the following cycle.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_A and DATA_B buses will equal the value N in bits. The DATA_OUT width will be N
bits wide.

32 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

OrImage : OR two images
 Entity ORImage is
 Generic (
 N : integer := 32
);
 Port (
 DATA_A : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_A : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 REQ_PIXEL : out std_logic;
 DATA_B : in std_logic_vector(N - 1 downto 0)
);
 end ORImage;

Using the OrImage Component

The OrImage component takes a stream of camera data in Pixel Pipeline Format. This
stream must be presented to the inputs DATA_A, DVALID_A, EOL_IN and EOF_IN.

The OrImage component also sources a second data stream from the DATA_B input. This
input is intended to source its data from a FIFO or other similar storage. When a piece of
data is required on the DATA_B input the REQ_PIXEL signal will be asserted. The data
should be present on the DATA_B port the following cycle.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_A and DATA_B buses will equal the value N in bits. The DATA_OUT width will be N
bits wide.

33 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

XorImage : XOR two images
 Entity XORImage is
 Generic (
 N : integer := 32
);
 Port (
 DATA_A : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_A : in std_logic;
 DVALID_OUT : out std_logic;
 CLOCK : in std_logic;
 RESET : in std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 REQ_PIXEL : out std_logic;
 DATA_B : in std_logic_vector(N - 1 downto 0)
);
 end XORImage;

Using the XorImage Component

The XorImage component takes a stream of camera data in Pixel Pipeline Format. This
stream must be presented to the inputs DATA_A, DVALID_A, EOL_IN and EOF_IN.

The XorImage component also sources a second data stream from the DATA_B input. This
input is intended to source its data from a FIFO or other similar storage. When a piece of
data is required on the DATA_B input the REQ_PIXEL signal will be asserted. The data
should be present on the DATA_B port the following cycle.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

The data buses are all unsigned and scaled according to the generic N. The width of the
DATA_A and DATA_B buses will equal the value N in bits. The DATA_OUT width will be N
bits wide.

34 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Convolution Functions

The convolution functions perform convolution on a frame of data presented to
them. A frame is presented by a camera in a line-by-line format. This means that a
way of storing lines of data is needed as we need at least 2 lines and 3 pixels worth of
data before we are able to perform the first correct maths. The Virtex II FPGA’s
contain large amounts of Block RAM that is ideal for this purpose. The
CONVOLVE component is made up of 3 sub components. These are called
dataSupply, dataMaths and framePad. The function of dataSupply is to take a stream
of data and present it correctly to the dataMaths component. The data will arrive at
the dataSupply in the format Line1 pixel1, line1 pixel2…. The dataSupply component
will then manipulate this data and output the appropriate nine pixel values at once.

 …………..

 ……..

dataSupply

 dataMaths

framePad

The format of the data out of the dataMaths component will be back into a data
stream of single pixels. Through the previous two components the control signals
have been passed through unaffected other than being delayed by the latency of the
component. Due to the nature of convolution a pixel will be lost from every edge of
the frame. This means that the pixels whose value is valid looks like that shown on
the left below where the outer box shows the frame indicated by the control signals
but the inner filled box shows the position of the valid data. The framePad
component shifts the valid data to that shown in the right hand diagram. It will also

35 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

add a pixel of value 0 to replace the lost pixels, indicated by the grey area in the
diagram below right.

36 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Convolve : Perform convolution with 3x3 window
 Entity Convolve is
 Generic(
 N : integer := 32;
 LINE_LENGTH : integer := 32;
 RAM_ADDR_WIDTH : integer := 5;
 KERNEL : string := "GENERAL"
);
 Port (
 DATA_IN : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 K_A1 : in std_logic_vector(17 downto 0);
 K_A2 : in std_logic_vector(17 downto 0);
 K_A3 : in std_logic_vector(17 downto 0);
 K_B1 : in std_logic_vector(17 downto 0);
 K_B2 : in std_logic_vector(17 downto 0);
 K_B3 : in std_logic_vector(17 downto 0);
 K_C1 : in std_logic_vector(17 downto 0);
 K_C2 : in std_logic_vector(17 downto 0);
 K_C3 : in std_logic_vector(17 downto 0);
 SHIFT : in std_logic_vector(3 downto 0);
 CLOCK : in std_logic;
 RESET : in std_logic
);
 end Convolve;

Using the Convolve Component

The Convolve component takes a stream of camera data in Pixel Pipeline Format. This
stream must be presented to the inputs DATA_A, DVALID_IN, EOL_IN and EOF_IN.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

In the case of a general convolution (KERNEL=”GENERAL”) the constants are input via the
K inputs K_A1, K_A2, K_A3, K_B1, K_B2, K_B3, K_C1, K_C2, and K_C3.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

The N generic option sets the data bus width used. The output data bus is the same size as
the input data bus and that size will be N bits wide.

The generic LINE_LENGTH sets the number of pixels in a line.

RAM_ADDR_WIDTH is the generic that defines the number of bits used to address the Block
RAM that is used to store lines of data. For example, if a line is 32 pixels long then 5 bits
will be required so RAM_ADDR_WIDTH should be set to 5. If it were 512 pixels long then 10
bits would be required so RAM_ADDR_WITH should be 10. If however the number of pixels

37 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

in a line is not a power 2 then the number of bits to address the block RAM should be
rounded up e.g. if the line length is 384 then this option should be set to 9. Setting this
option too high will not cause the component to fail but will waste Block RAM resources.

The KERNEL option describes the operation that is required of the Convolve component.
There are 8 options for this generic, GENERAL, vSobel, hSobel, vPrewitt, hPrewitt,
Laplacian, LPFilter, and Sharpen.

Each option defines a specific kernel operator. For the GENERAL case, the co-efficients
used are those supplied through the K_** component inputs. This option will take an input
data bus up to 18 bits and use Virtex II hardware multipliers to multiply each cell by the
constant given by the inputs K_A1 to K_C3. The pixels in the 3x3 Kernel are referenced as
follows:

A1 B1 C1

A2 B2 C2

A3 B3 C3

The other Kernel options will perform convolution based upon optimised operations. That
is, where the use of a dedicated multiplier can be saved, a simple shift will be used to
implement the co-efficient operation. That is, multiplication can be performed by shifting
data. For example, a shift left by one is the same as a multiplication by two.

Kernel Type

K_A1 K_B1 K_C1

K_A2 K_B2 K_C2

General

K_A3 K_B3 K_C3

1 0 -1

2 0 -2

vSobel

1 0 -1

1 2 1

0 0 0

hSobel

-1 -2 -1

1 0 -1

1 0 -1

vPrewitt

1 0 -1

1 1 1

0 0 0

hPrewitt

-1 -1 -1

38 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

-1 -1 -1

-1 8 -1

Laplacian

-1 -1 -1

1 2 1

2 4 2

LP Filter

(requires shift right
by 4)

1 2 1

-1 -1 -1

-1 16 -1

Sharpen

(requires shift left
by 3)

-1 -1 -1

Some of these Kernels require a shift to correct any offset introduced. This can be achieved
by setting the value of the shift input. The data can be shifted by up to 4 places either left or
right.

The SHIFT input is a 2’s complement signed value, where a positive number is a left shift,
and a negative number is a right shift. Therefore, to shift left by one place, SHIFT would be
set to +1 “0001”. To shift right by one place, SHIFT would be set to –1 “1111”.

Convolve Frame Size and Latency

Due to the nature of convolution two pixels will be lost from each dimension of a frame.
To compensate for this the frameControl component within the Convolve component will
add an extra line of pixels to the top and bottom of each frame and a pixel to the start and
end of each line. These pixels have the value of zero. The end result of this operation is that
the output frame is the exact same size as the input frame.

The latency of this component is 2 lines + 2 pixels + 1 clock cycle. This is because it is not
possible to perform the necessary maths until this minimum amount of data has past.

Convolve K Values

The inputs to the convolve component named K_** must be in two’s complement format.

Convolve Input and Output Data Values

The input data values must be unsigned. The Convolve component will present unsigned
data values for the result of the convolution.

After the results are shifted according to the amount specified by SHIFT input, the result is
rounded. All negative results are set to zero and all results greater than the output data bus
maximum value are set to the maximum.

For example, with N set to 8 all internal results greater than 255 would be set to 255, and all
negative results would be set to 0.

39 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Convolve5x5 : Perform convolution with 5x5 window
 Entity Convolve5x5 is
 Generic(
 N : integer := 8;
 LINE_LENGTH : integer := 384;
 RAM_ADDR_WIDTH : integer := 5;
 KERNEL : string := "GENERAL"
);
 Port (
 DATA_IN : in std_logic_vector(N - 1 downto 0);
 DATA_OUT : out std_logic_vector(N - 1 downto 0);
 DVALID_IN : in std_logic;
 DVALID_OUT : out std_logic;
 EOL_IN : in std_logic;
 EOL_OUT : out std_logic;
 EOF_IN : in std_logic;
 EOF_OUT : out std_logic;
 K_A1 : in std_logic_vector(17 downto 0);
 K_A2 : in std_logic_vector(17 downto 0);
 K_A3 : in std_logic_vector(17 downto 0);
 K_A4 : in std_logic_vector(17 downto 0);
 K_A5 : in std_logic_vector(17 downto 0);
 K_B1 : in std_logic_vector(17 downto 0);
 K_B2 : in std_logic_vector(17 downto 0);
 K_B3 : in std_logic_vector(17 downto 0);
 K_B4 : in std_logic_vector(17 downto 0);
 K_B5 : in std_logic_vector(17 downto 0);
 K_C1 : in std_logic_vector(17 downto 0);
 K_C2 : in std_logic_vector(17 downto 0);
 K_C3 : in std_logic_vector(17 downto 0);
 K_C4 : in std_logic_vector(17 downto 0);
 K_C5 : in std_logic_vector(17 downto 0);
 K_D1 : in std_logic_vector(17 downto 0);
 K_D2 : in std_logic_vector(17 downto 0);
 K_D3 : in std_logic_vector(17 downto 0);
 K_D4 : in std_logic_vector(17 downto 0);
 K_D5 : in std_logic_vector(17 downto 0);
 K_E1 : in std_logic_vector(17 downto 0);
 K_E2 : in std_logic_vector(17 downto 0);
 K_E3 : in std_logic_vector(17 downto 0);
 K_E4 : in std_logic_vector(17 downto 0);
 K_E5 : in std_logic_vector(17 downto 0);
 SHIFT : in std_logic_vector(3 downto 0);
 CLOCK : in std_logic;
 RESET : in std_logic
);
 end Convolve5x5;

Using the Convolve5x5 Component

The Convolve5x5 component takes a stream of camera data in Pixel Pipeline Format. This
stream must be presented to the inputs DATA_A, DVALID_IN, EOL_IN and EOF_IN.

The result is output in the Pixel Pipeline Format on the outputs DATA_OUT, DVALID_OUT,
EOL_OUT, and EOF_OUT.

40 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

In the case of a general convolution (KERNEL=”GENERAL”) the constants are input via the
K inputs K_A1, K_A2, K_A3, K_A4, K_A5, K_B1, K_B2, K_B3, K_B4, K_B5, K_C1, K_C2,
K_C3, K_C4, K_C5, K_D1, K_D2, K_D3, K_D4, K_D5, K_E1, K_E2, K_E3, K_E4, K_E5.

The CLOCK input must be driven with the system wide pixel clock, and the RESET input
driven by an active-high reset signal. All clock activity is on the rising edge of the CLOCK
input.

The N generic option sets the data bus width used. The output data bus is the same size as
the input data bus and that size will be N bits wide.

The generic LINE_LENGTH sets the number of pixels in a line.

RAM_ADDR_WIDTH is the generic that defines the number of bits used to address the Block
RAM that is used to store lines of data. For example, if a line is 32 pixels long then 5 bits
will be required so RAM_ADDR_WIDTH should be set to 5. If it were 512 pixels long then
10 bits would be required so RAM_ADDR_WITH should be 10. If however the number of
pixels in a line is not a power 2 then the number of bits to address the Block RAM should
be rounded up e.g. if the line length is 384 then this option should be set to 9. Setting this
option to high will not cause the component to fail but will waste Block RAM resources.

The KERNEL option describes the operation that is required of the Convolve5x5
component. There are 4 options for this generic, GENERAL, vSobel, hSobel, and
Laplacian.

Each option defines a specific kernel operator. For the GENERAL case, the co-efficients
used are those supplied through the K_** component inputs. option will take an input data
bus up to 18 bits and use Virtex II hardware multipliers to multiply each cell by the constant
given by the inputs K_A1 through to K_E5. The pixels in the 5x5 Kernel are referenced as
follows:

A1 B1 C1 D1 E1

A2 B2 C2 D2 E2

A3 B3 C3 D3 E3

A4 B4 C4 D4 E4

A5 B5 C5 D5 E5

The other Kernel options will perform convolution based upon optimised operations. That
is, where the use of a dedicated multiplier can be saved, a simple shift will be used to
implement the co-efficient operation. That is, multiplication can be performed by shifting
data. For example, a shift left by one is the same as a multiplication by two.

41 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Kernel Type

K_A1 K_B1 K_C1 K_D1 K_E1

K_A2 K_B2 K_C2 K_D2 K_E2

K_A3 K_B3 K_C3 K_D3 K_E3

K_A4 K_B4 K_C4 K_D4 K_E4

General

K_A5 K_B5 K_C5 K_D5 K_E5

1 2 0 -2 -1

2 3 0 -3 -2

3 4 0 -4 -3

2 3 0 -3 -2

vSobel

1 2 0 -2 -1

1 2 3 2 1

2 3 4 3 2

0 0 0 0 0

-2 -3 -4 -3 -2

hSobel

-1 -2 -3 -2 -1

-1 -3 -4 -3 -1

-3 0 6 0 -3

-4 6 20 6 -4

-3 0 6 0 -3

Laplacian

-1 -3 -4 -3 -1

The SHIFT input is a 2’s complement signed value, where a positive number is a left shift,
and a negative number is a right shift. Therefore, to shift left by one place, SHIFT would be
set to “0001”. To shift right by one place, SHIFT would be set to “1111”.

Convolve Frame Size and Latency

Due to the nature of 5x5 convolution four pixels will be lost from each dimension of a
frame. To compensate for this the frameControl component within the Convolve5x5
component will add two extra lines of pixels to the top and bottom of each frame and two
extra pixels to the start and end of each line. These pixels have the value of zero. The end
result of this operation is that the output frame is the exact same size as the input frame.

The latency of this component is 4 lines + 5 pixels + 1 clock cycle. This is because it is not
possible to perform the necessary maths until this minimum amount of data has past.

42 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Convolve K Values

The inputs to the convolve component K_** must be in two’s complement format.

Convolve Input and Output Data Values

The input data values must be unsigned. The Convolve5x5 component will present
unsigned data values for the result of the convolution.

After the results are shifted according to the amount specified by SHIFT input, the result is
rounded. All negative results are set to zero and all results greater than the output data bus
maximum value are set to the maximum.

For example, with N set to 8 all internal results greater than 255 would be set to 255, and all
negative results would be set to 0.

43 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Implementing Larger Convolutions
Convolutions with a Kernel larger than 5x5 are unusual, but of course can easily be
implemented in VHDL. Starting from the VHDL of one of the convolutions supplied you
would need to change the following things:

The Convolve and Convolve5x5 components described above are each made up from three
sub-components called dataSupply, dataMaths and framePad.

In implementing a larger convolution the dataSupply component must be changed to
provide a larger amount of storage of lines of camera data. This component must provide
enough storage for N lines of the image, where N is the depth of the Kernel. For example,
the Convolve component (3x3) provides enough storage for 3 lines of an image, and the
Convolve5x5 component provides enough storage for 5 lines. In controlling how this
memory is used, a simple state machine is needed that automatically fills one Block RAM
after another for each line of camera data passed into the component.

The dataMaths component is the heart of the convolution and needs to be modified to
perform the same basic mathematical operation on a larger number of inputs. As the
number of multiplies increases, you will need to pipeline the internal operation of the maths
component to still meet your operating time constraints. Also, you may need to share
dedicated multipliers as the number of multiplications increases. Of course, where you are
able to perform the necessary multiplications with a simple shift operation this will allow
you to save on dedicated multipliers.

The framePad component controls the size mismatch between the input data for the
convolution and the output data. When a convolution is performed on an image, the output
frame will have less lines and less pixels depending on the size of the kernel. For example,
with a 3x3 kernel, the outside edge is lost around the entire image. This means that a
512x512 image would become a 510x510 image. For a 5x5 kernel, two pixels are lost along
each edge, so a 512x512 image would become a 508x508 image. The framePad component
however must pad out these edges so the final output image is the same size as the original.

This padding operation requires the framePad component to add black pixels (pixel value of
0) along all edges of the image to fill out the size to match that of the input image. This is
done with state machine that adds black pixels, and ensures the correct generation of pixel-
pipeline-format end-of-line markers and end-of-frame markers.

When to use off chip memory
There is a separate application note “Using external SDRAM for image processing with
FPGAs” that discusses when and how you might need to use external memory for
convolutions.

44 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

FPGA Resources Used

The following tables give the Block RAM and hardware multiplier resources used by
each component.

Component Block RAMs Used Hardware Multipliers Used

AddK 0 0

SubK 0 0

Invert 0 0

AndK 0 0

OrK 0 0

XorK 0 0

MpyK 18-bit i/ps 0 1

MpyK 32-bit i/ps 0 4

LShK 0 0

RShK 0 0

FillK 0 0

FillRamp 0 0

AddImage 0 0

SubImage 0 0

AndImage 0 0

OrImage 0 0

XorImage 0 0

MpyImage 18-bit i/ps 0 1

MpyImage 32-bit i/ps 0 4

45 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Component Block RAMs used Hardware Multipliers Used

Convolve
(General)

3 (up to 2K line length)
6 (up to 4K line length)

9

Convolve
(vSobel)

3 (up to 2K line length)
6 (up to 4K line length)

0

Convolve
(hSobel)

3 (up to 2K line length)
6 (up to 4K line length)

0

Convolve
(vPrewitt)

3 (up to 2K line length)
6 (up to 4K line length)

0

Convolve
(hPrewitt)

3 (up to 2K line length)
6 (up to 4K line length)

0

Convolve
(Laplacian)

3 (up to 2K line length)
6 (up to 4K line length)

0

Convolve
(LPFilter)

3 (up to 2K line length)
6 (up to 4K line length)

0

Convolve
(Sharpen)

3 (up to 2K line length)
6 (up to 4K line length)

0

Convolve5x5
(General)

5 (up to 2K line length)
10 (up to 4K line length)

25

Convolve5x5
(vSobel)

5 (up to 2K line length)
10 (up to 4K line length)

0

Convolve5x5
(hSobel)

5 (up to 2K line length)
10 (up to 4K line length)

0

Convolve5x5
(Laplacian)

5 (up to 2K line length)
10 (up to 4K line length)

0

46 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Performance

The performance of each component is extremely implementation specific. As a guide the
components were each instantiated in a Virtex-II xc2v1000–4 FPGA with the surrounding
architecture as shown below. The table contains the results obtained. These results give a
good idea of the components performance relative to each other but the exact speed is an
ideal for the specific silicon it was built for.

Component Asynchronous Speed (MHz) Synchronous Speed (MHz)

AddK 570 513

SubK 570 513

Invert 570 513

AndK 570 513

OrK 570 513

XorK 570 513

MpyK Restricted by mult18x18 delays Restricted by mult18x18 delays

LShK 570 513

RShK 570 513

FillK 570 513

FillRamp 570 513

Component

Registers

FPGA

To
pads

From
Pads

47 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Component Asynchronous Speed (MHz) Synchronous Speed (MHz)

AddImage N/A 453

SubImage N/A 453

AndImage N/A 453

OrImage N/A 453

XorImage N/A 453

MpyImage N/A Restricted by mult18x18 delays

Convolve
(General) N/A Restricted by mult18x18 delays

Convolve
(vSobel) N/A 202

Convolve
(hSobel) N/A 202

Convolve
(vPrewitt) N/A 202

Convolve
(hPrewitt) N/A 202

Convolve
(Laplacian) N/A 202

Convolve
(LPFilter) N/A 202

Convolve
(Sharpen) N/A 202

Convolve5x5
(General) N/A Restricted by mult18x18 delays

Convolve5x5
(vSobel) N/A 183

Convolve5x5
(hSobel) N/A 183

Convolve5x5
(Laplacian) N/A 183

48 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Default Component Settings and Latency

The following tables give the default settings for each component, along with the
latency through each component and whether an asynchronous version is supported.

Component Latency
(Synchronous)

Default Input
Bus Width

Default Output
Bus Width

Asynchronous
Version

AddK 1 32 32 Yes

SubK 1 32 32 Yes

Invert 1 32 32 Yes

AndK 1 32 32 Yes

OrK 1 32 32 Yes

XorK 1 32 32 Yes

MpyK 2 (18x18)
6 (24x24)
6 (32x32)

18 18 Yes

LShK 1 32 32 Yes

RShK 1 32 32 Yes

FillK 0 32 32 No

FillRamp 0 32 32 No

AddImage 2 32 32 No

SubImage 2 32 32 No

AndImage 2 32 32 No

OrImage 2 32 32 No

XorImage 2 32 32 No

MpyImage 3 (18x18)
7 (24x24)
7 (32x32)

18 18 No

Convolve 2 lines +
3 pixels +
1 cycle

32 32 No

Convolve5x5 4 lines +
5 pixels +
1 cycle

32 32 No

49 HUNT ENGINEERING VHDL Imaging Source Modules REFERENCE MANUAL

Technical Support

Technical support for HUNT ENGINEERING products should first be obtained from
the comprehensive Support section www.hunteng.co.uk/support/index.htm on the HUNT
ENGINEERING web site. This includes FAQs, latest product, software and
documentation updates etc. Or contact your local supplier - if you are unsure of details
please refer to www.hunteng.co.uk for the list of current re-sellers.

HUNT ENGINEERING technical support can be contacted by emailing
support@hunteng.co.uk, calling the direct support telephone number +44 (0)1278 760775,
or by calling the general number +44 (0)1278 760188 and choosing the technical support
option.

N.B. Technical support for the Image Processing VHDL source modules is
provided for users of HUNT ENGINEERING hardware ONLY.

http://www.hunteng.co.uk/support/support.htm
www.hunteng.co.uk
mailto:support@hunteng.co.uk

	Introduction
	Function Overview
	Architecture of the VHDL Blocks
	Function Classes
	Fixed Co-Efficient Functions
	Variable Co-Efficient Functions
	Convolution Functions
	 Generic Options
	 Understanding Bus Widths
	Component Latency and Output Controls
	Data Format
	Input and Output of Image Data
	Region of Interest
	Image Capture and Image Processing

	Image Function Limitations
	FPGA Resources – Multipliers and Block RAMs
	FPGA Performance

	Image Processing Example
	Function List
	Fixed Co-efficient Functions
	Variable Co-efficient Functions
	Convolution Functions

	Function Descriptions
	Fixed Co-efficient Functions
	AddK : Add constant to each pixel
	 SubK : Subtract constant from each pixel
	 MpyK : Multiply constant with each pixel
	AndK : AND constant with each pixel
	 OrK : OR constant with each pixel
	 XorK : XOR constant with each pixel
	 RShK : Right shift pixel
	 LShK : Left shift pixel
	 Invert : Invert each pixel
	 Square : Square each pixel
	 FillK : Fill pixel with constant
	 FillRamp : Fill image with ramp

	 Variable Co-efficient Functions
	AddImage : Add two images
	 SubImage : Subtract two images
	 MpyImage : Multiply two images
	 AndImage : AND two images
	 OrImage : OR two images
	 XorImage : XOR two images

	 Convolution Functions
	 Convolve : Perform convolution with 3x3 window
	 Convolve5x5 : Perform convolution with 5x5 window
	 Implementing Larger Convolutions
	When to use off chip memory

	FPGA Resources Used
	Performance
	Default Component Settings and Latency
	Technical Support

