F Supporters of

treme/ DS~
HUNT ENGINEERING trom $7 3111
0@ & Chestnut Court, Burton Row, : *
Q& Q} Brent Knoll, Somerset, TA9 4BP, UK

o* Qéy Tel: (+44) (0)1278 760188,
PRSI o\ Fax: (+44) (0)1278 760199,

o “990 “Q\’o&“ Email: sales@hunteng.demon.co.uk T P
¥ http://www.hunteng.co.uk

“““‘qﬂfﬂ http://www.hunt-dsp.com

Implementing an FFT with the HERON-FPGA Family
Rev 1.1 T.Hollis 11-05-05

Introduction

The HERON-FPGA family is ideal for many of the building blocks of digital communications. Providing large
easily-programmed gate arrays, often combined with interface elements like ADC or DACs, they can be used to
implement many system components.

Many DSP systems rely on the transformation of discrete data between the time and frequency domains, using
Discrete Fourier Transforms (DFT). The Fast Fourier Transform (FFT) algorithm is an efficient technique, both
in terms of time and hardware requirement, to implement a Discrete Fourier Transform in an FPGA.

This note goes through the design of an FFT for implementation in a HUNT ENGINEERING HERONIO2V2
using the high speed A/D and D/A converters on the module. The design is written in VHDL using the
‘Transient Analysis(Ex2)’ example as its start point, this includes all the HUNT ENGINEERING Hardware
Interface Layer to interface to the Heron Interface, the Hunt Serial Bus(HSB) and both A/D and D/A converters
on the I02V2.

The Example uses the Xilinx ‘CoreGen’ to generate the building blocks which will make up the FFT so allowing
the example to demonstrate designing a FFT rather than writing VHDL code.

1 V1.11105

Whatis a FFT

One of the main tools in Digital Signal Processing is the Digital Fourier Transform, which allows discrete set of
voltage versus time samples to be transformed into a discrete set of magnitude versus frequency and phase
versus frequency samples. There is also an inverse transform that allows the frequency domain data to be
transformed back into the time domain. The two domains provide complementary information about the same
data.

The Fast Fourier Transform is an algorithm for computation of the Digital Fourier Transform that is efficient,
both in terms of the hardware requirement and speed in which a transform can be accomplished. In this example
the FFT is performed by a Xilinx CoreGen block that employs a Cooley-Tukey radix-4 decimation in frequency
(DIF) FFT to compute the DFT of a 1024 point complex sequence. In general, this algorithm requires the
calculation of columns or ranks of radix-4 butterflies, sometimes referred to as dragonflies. Each processing rank
consists of N/4 dragonflies. For n = 1024 there are 5 dragonfly ranks, with each rank comprising 256 dragonflies.
The DFT is usually considered as a technique that allows meaningful inspection of a particular frequency
component as relative to observing the time waveform. The transform can also have other advantages in the
processing of data. For example if it is required to convolve two discrete time sequences, the equivalent
operation in the frequency plane is multiplication. In some applications the transform of the data and then
multiplication could be faster and require less hardware than computing the convolution in the time domain.

The Fourier Transform relationship exists not just between the time and frequency domains, for example in sonar
systems where there is an array of hydrophone elements in space, there is a Fourier Transform relationship
between the elements and the angular acoustic beams that can be formed.

2 V1.11105

WINDOW
DDS
[]
—» ADC o¢-® FFT
®
MEM <4— DAC
HERON HERON
INTERFACE INTERFACE

1 v

Figure 1 — FFT Example Block Diagram.

FFT Example

The block diagram in figure 1 shows the structure of the FFT example implemented in the FPGA on the
HERONIO2V2. The FFT in the design is a 1024 point complex FFT/IFFT implemented using a Xilinx CoreGen
block. The FFT is running with a I00MHz clock and is completing an FFT every 4096 clock cycles, or 40.96
micro Seconds.

To make the example flexible, and also to demonstrate some of the characteristics/pitfalls that can be
encountered when using an FFT, the HUNT ENGINEERING Serial Bus (HSB) link has been used to control the
configuration of the example using values written to registers in the FPGA. If the HSB is not available to you
then the example can still be used as the registers have default values that connect the ADC-A output to the FFT
block using a Kaiser-Bessel window. The output of the FFT is available at the DAC-A output. To synchronise
the signal on the DAC output to the frames of data from the FFT there is a synchronisation pulse on the least
significant pin (I/00) of the digital I/O connector.

There are three possible signal sources for the FFT, the default source is ADC-A on the HERONIO2V2, the
second source is a Direct Digital Synthesiser (DDS) which allows a full 16bit complex sine wave to be applied to
the FFT. The frequency of the DDS output, which has a resolution of 1.5Hz, is determined by a value loaded
over the HSB into registers in FPGA. The default value is 10.0MHz. The third source is a 1024x32 block of
memory in the FPGA which can be written to over the Heron interface. This source is very flexible as any data
can be written into the memory, this allows not only forward transforms but also if a suitable pattern for a
frequency domain signal is loaded, an inverse transform into the time domain can be performed.

The DDS and the Memory sources allow full complex signals to be applied to the FFT, the ADC-A signal source
sets the quadrature component of the input signal to zero.

The FFT block is a powerful tool but must be used with care if the output values are to represent what you want
them to. The windowing of the input data to the FFT is an important example of this. In this example two data
windows are available, a rectangular window where all the input data values have the same weighting and a
Kaiser-Bessel window which shades out the values towards the ends of the data window. Which of these two
window is selected is determined by a register value written over the HSB. The default value selects the Kaiser-
Bessel window.

3 V1.11105

The FFT block is a 1024 point complex FFT/IFFT generated using the Xilinx Core Generator. For this example
the Triple Memory Space (TMS) configuration has been used so that the FFT block is supplied with data 100%
of the time and no potential computation cycles are wasted. There are two inputs/working memory banks on the
input to the FFT block, which allows one block to be the FFT core’s working memory while the other is loaded
with a new block of data. On completion of the transform the results are available in a third block of memory,
and the two input memory blocks swap rolls.

The complex output values from the FFT are linked to the Heron interface, and also indirectly to DAC-A on the
HERONIO2V2. The output from the FFT block has both ‘Phase’ and ‘Quadrature’ components, the signal on
DAC-A is the sum of the squares of these components.

The signal to the DAC-B output is the Phase component of the input signal to the FFT prior to the sample
window being applied.

Using the Example FFT

The FFT project for the HERON-IO2V2 is supplied on the HUNT ENGINEERING CD, along with bit streams that can
be loaded directly onto the HERON-IO2V2. The bit streams can be found under ‘fpga\io2v2\fft example’ and the name
of the bitstream reflects the FPGA part number. I.e. 2v1000fg456 is for the HERON-I02V2 when fitted to a HEPC9
carrier board. If you are using the HEPCS8 carrier board you will need to use the bit stream that ends with © pc8’, so for
this example, the correct bit stream will be 2v1000fg465 pc8.

DSP example software can be found in the DSP directory and an example that can be run from the host in the host
directory.

The FPGA project files can be found in the ISE directory, and the SRC directory for the VHDL source and window
coefficient files. If you make changes to the project and re-build it you can change the functionality to be whatever you
want.

Basic implementation

The simplest demonstration of the FFT example is to fit an IO2V2 to a mother board such as an HEPCS8 or
HEPC9 and downloading the applicable bitstream. The default configuration will give ADC-A as the FFT input,
a Kaiser-Bessel window, and magnitude squared output of the FFT on DAC-A output.

Connect an RF signal generator’s 50 Ohm output to the ADC-A input of the HERON-I02V2, with a frequency
of 10.0MHz and an output level of +5dBm, which is approximately 2Volts peak to peak into 200 Ohms. If the
HERON-I02V2 does not have a 200 Ohm input impedance then the signal level on the RF signal generator will
need to be adjusted to give 2Volts peak to peak on the I02V2 input. If the I02V2 is DC coupled then the inputs
will require a DC bias.

The signal from the signal generator is now digitised at a rate of 100MspSecond. The blocks of data to be
transformed are multiplied by the Kaiser-Bessel window coefficients and loaded into one of the input/working
memory banks of the FFT block. The complex output of the FFT block are squared and added together to give
the magnitude squared of the frequency components. This is linked to the DAC-A output of the HERONIO2V2
and can be connected to an oscilloscope. To synchronise the blocks of output spectra from the DAC-A output
with the oscilloscopes time base a synchronisation pulse is output on the ‘Digital I/O” connector pin 1/00.

The DAC-B output from the HERONIO2V?2 is linked to the Phase input signal to the FFT block prior to it being
windowed.

The 1024 output values from the FFT will be clocked out of DAC-A at a rate of 100MspSecond, so will take
(1024/100MHz) = 10.24micro Seconds. An oscilloscope set on a time base of 1 microsecond/div and 10 division
horizontal scale will display 10microSeconds. The maximum output level of the DAC’s on the HERONIO2V?2 is
+/-1Volt, so as the output is always positive the maximum output signal level from the DAC of +1Volt. For a
10MHz, +5dBm signal the output level is about 350milliVolts.

The output level will depends on the window type and signal source. For this basic implementation the output
level from FFT is on the low side for two reasons. Firstly because the signal from signal generator is real not
complex the level is 6dB’s down and further because a Kaiser-Bessel window is used the level is approximately
a further 8dB’s down. The output from the DAC is also the sum of squares. To compensate for this the default
mode DAC output level has an extra gain of x8 implemented in the FPGA.

4 V1.11105

C6000 Example Based Software

HEART carrier like HEPC9

If you have a HEART based module carrier like HEPC9, you can run the DSP based example code with your
HERON-IO2 and C6000 modules fitted to any slots. Then you need to configure the HEART connections
between the modules using HeartConf, or alternatively use default routing jumpers to make the connection.

If you use HeartConf, then a network file that connects the two modules as follows

For HUNT ENGINEERING's Device Driver API use:
BD API Board_ type Board_Id Device Id

Using API
BD APTI HEPSA 0 O

Nodes description
ND BD nb ND NAME ND Type CC-id HERON-ID filename (s)

B o o o s o o .
c6 0 dspmodule ROOT (0) 00000001 mydspprog.out
fpga 0 heronio2 normal 00000002 nofile
ibc 0 ibcl normal 0x06
pcif 0O NodeC normal 0x05
__
from:slot fifo to:slot fifo timeslots
__
heart dspmodule 0 heronio2 0 1
heart heronio2 0 dspmodule 0 1

could be used to make a connection from FIFO#0 of the DSP module to FIFO#0 of the HERON-IO2. Of course
you need to modify the HERON-IDs to correctly show which slots your modules are fitted to.

If you prefer to use the default routing jumpers then you can simply fit the jumpers to 0, on both modules for
both input and output FIFOs. In this case you are selecting to use timeslot 0 to connect between the FIFO#0 of
each module to the other.

HEPCS carrier

If you have an HEPCS, then you can also fit your HERON-I02 and C6000 modules to any HERON slots. In this
case the FIFO numbers that each module uses will depend on the module slots you have chosen. An example
would be if the C6000 module is in slotl, and the HERON-IO2 is on slot3, then the DSP will use its FIFO#2, and
the HERON-IO2 would use its FIFO#3.

DSP example : What it does

We supply a ‘C’ source file for a C6000 based HERON module. Before you can use it you need to make a new
project that matches the C6000 module type that you have.

The program is called ‘fft example.c’ and it is located in the ‘dsp’ sub-directory of this example. This example
can be used both as a confidence check and a starting point for your development.

Once the DSP program is compiled and loaded onto the DSP it will be used to download values to the I02V2
control registers via the HSB and then gather the FFT output data into the DSP memory where it can be
displayed.

After you have loaded the correct bit stream into your HERON-102 module, the “DONE” LED should be

switched off showing that the configuration was successful. Also The USER LED4 should flash about once per
second, showing that the clocks are properly running in the FPGA. If the DONE LED is off, but the LED is not
flashing it may be because the Delay Locked Loop used in the clock circuit of the FPGA needs to be reset. You

5 V1.11105

can do this using the utility under “programs = HUNT ENGINEERING - API board RESET” if you want, but
such a reset should be made using the HUNT ENGINEERING Reset Plug in for Code Composer.

If you have a HEART based carrier (like an HEPC9) you will need to set the FIFO connections that will be used
in your system. You will do this using the Heartconf program, which can be called from the HUNT
ENGINEERING reset plug in for Code Composer Studio. This is probably the best way as it will re-configure
your connections every time you reset the system. If you are not already comfortable doing this you should
review the HEART movies and documentation again.

DSP example: setting it up

If you have an HEPCS8 your FIFO connections will be determined by the position of the modules on your
carrier board.

If you have an HEPC9 however the FIFO connections are determined by the settings that you made.

The example that we supply is a C file called fft example.c. It needs to be changed to reflect your actual
needs, and then built using Code Composer Studio.

The example is a HERON-API project that can be set up using the ‘Create new HERON-API project’ plug-in.
To do this, choose “Tools>HUNT ENGINEERING—> Create new HERON-API Project” from inside
Code Composer Studio. This will guide you through setting up the project and as long as you choose the
name “fft_example” for the project it will incorporate the fft_example.c source file.

This project will incorporate the correct HERON-API library for your module and Module carrier
combination.

You must review some settings at the top of the source file, and change them to reflect your system setup.
The first line is
#define FIFONO 2 /* FIFO through which module communicates with FPGA */

This is the fifo that the C6000 uses to communicate with the HERON-IO2. For example if you have a DSP
module in slotl of an HEPCS8, and the HERON-IO?2 is in slot2, the setting needs to be 2. If you have an

HEPC9 you must set whatever you have chosen, which is 0 in both of our HEPC9 configuration examples
given above.

The next thing is to set the line

#define FPGA TO_DSP 3

This is the fifo that the HERON-IO2 uses to communicate with the C6000. For example if you have a DSP
module in slot]l of an HEPCS, and the HERON-IO2 is in slot2, the setting needs to be 3. If you have an HEPC9
you must set whatever you have chosen, which is 0 in both of our HEPC9 configuration examples given above.

Finally you need to change the line

#define FPGA SLOT 2

to show which module slot the HERON-IO2 can be found in. This is used to address the HSB messages.
Then you can build the example using Code Composer Studio.

DSP Example: using it

To run the example, load the program onto the DSP using the File>Load command of Code Composer. At this
stage it is advisable to open the HUNT ENGINEERING Reset Plug in, and set the option to “halt processors,
reload them and then run to main”. If you have a HEART based carrier and you will use HeartConf, select this
also in the reset plug in. Then use this reset to reset the system, and reload it, which empties the FIFOs, and
configures HEART if you need to.

But before you can run the example, you must have remembered to load the bit-stream onto the HERON-IO2.
What bit-stream to choose is shown above. If you don’t know how to load a bit-stream onto the HERON-102,
please review examplel once more. Verify that after the loading process the “Done” LED goes off, and now the
system has been reset (using the plug in) the USER LED4 should be flashing.

It doesn’t really matter in what order the DSP and the HERON-IO2 is loaded. You may just as well first load the
bit-stream and only then load the DSP. Finally, do a “Debug->Run” in Code Composer Studio to start the
example.

The fft example starts by configuring the FIFOs using the HSB. The fifo number that is programmed is set by
the “#define FPGA_TO_DSP 3” near the top of the program. You should have changed this to reflect which
FIFO you want to use.

6 V1.11105

Start

v v v

Signal source—> ADC-A DDS Memory
Read file
Read data file>
h 4
Transform direction=> Fwd Inv
[
v A 4 v A 4 v A 4 v
Window shape> Rect K-B Rect K-B Rect K-B Rect
v \ 4
DDS Frequency—> Frequency
v

Figure 2 — Flow diagram

When you run the program there are set up options for the fft-example which are shown in the flow diagram,
figure 2. The first choice is which signal source for the FFT and the options are between a signal generator
connected to the ADC-A input of the HERONIO2V2, a Direct Digital Synthesiser (DDS) implemented in the
Xilinx FPGA, and a block of memory within the Xilinx FPGA that can be written to over the HERON interface.
If the Memory option is selected then the next option is the file that is loaded into this 1024x32 block of RAM,
the least significant half of each word is the Phase component of the signal and the most significant half of each
word is the Quadrature component. As the Memory option is the only source that allows complete control over
the signal shape this is the only option that allows a choice of either forward or inverse Fourier Transforms. If
the inverse transform is selected then only a rectangular window for the FFT data is available.

There are two window options available for the signal data in the fft-example, the standard rectangular window,
and a Kaiser-Bessel window.

The last option, when the DDS source option is selected, is the required signal frequency, which can be resolved
down to 1.5Hz .

Once the options have been selected and the relevant values downloaded over the HSB to the FPGA, the fft-
example will grab 1024 word blocks of data from the output of the FFT over the HERON interface. Each block
of data is synchronised to the output of the FFT, each word has the Phase component value in the least
significant half word and the Quadrature component in the most significant half word.

This fft-example can now be used to demonstrate the characteristics/pitfalls of using an FFT, most of which
apply however the FFT is implemented.

7 V1.11105

‘1‘0.0

4124
-1.76
-7 63
-13.5
-19.44
-25.3
=31 .2

=371

a2el

-4g 8]
5477
606
6659
7249

-75.2

Figure 3 — DDS at 10MHz , Rectangular window

The Direct Digital Synthesiser (DDS) is a good source to start with as it is internal to the FPGA, has a high
frequency resolution, and generates both Phase and Quadrature signals at maximum amplitude. Figure 3 shows
the output of the FFT when a rectangular data window and a 10MHz DDS output frequency has been selected.
The horizontal axis of the plot is the FFT output point number. There are 1024 samples on the input to the FFT
which give 1024 complex points at the output of the FFT. The vertical axis is the magnitude of the FFT output
and is on a logarithmic scale, it is in dB’s. In the program ‘fft example.c’ this is an integer array ‘ampldata’.

. The first point to note is that the full 1024 points are displayed on the frequency axis so the range is from DC
up to Fs (the sample frequency), but there is only one peak at output sample point 102. There is no negative
frequency component at a position equivalent to (Fs-10MHz) = 90MHz because this is a full complex FFT and
when the magnitude of the FFT output is calculated, by squaring and summing the Phase and Quadrature
components for each point, the negative frequencies cancel out.

There are 1024 points at the output of the FFT, where the first is equivalent to DC and the last point one
increment before Fs. With the sample frequency Fs of 100MHz the frequency increment is (100MHz/1024) =
97656.25Hz/point, which makes point 102 centred on 9.961MHz, while point 103 is centred on 10.058MHz. The
10MHz signal lies between these two points.

The peak of the FFT output is spread across more than one point, also the other points not in the peak of the plot
do not go down to a noise floor but gently curve away from the peak. This is a function of the rectangular
window shape. In effect each output point from the FFT is the amplitude spectral density obtained using a filter
with a frequency response that is the Fourier transform of the window in the time domain, for a rectangular
window this is (Sinx/x).

Figure 4 shows the Sinx/x responses for three adjacent FFT output points, the particular points to note are firstly
the first side lobe in the point response is only 13 dB’s down on the main lobe, and all further side lobe peaks
only roll off at 6dB’s per octave, secondly the intersection of the main lobes of adjacent points is 4dB’s down on
the peak. Thirdly all “other” point responses have a null in the centre of the main lobe

8 V1.11105

Rectangular Response

B / N
- N N — ooz
E -25 / \ // \ / \ f \\ —pomﬂgf

e
e
|

Figure 4 -- Sinx/x functions

The side lobe levels in the response is the reason that away from the main lobe, in figure 3, the FFT output does
not drop down to the noise floor. The peak level measured at point 102 on the FFT output is not a true measure
of the signal level as the roll off in the response of the main lobe can cause as much as 4dB’s error, the
intersection level of two adjacent main lobes.

One characteristic of the Sin(x)/x frequency response at the output of the FFT is that at the peak of the main lobe
of any one of the points all the other points have a zero response. Figure 5 shows the FFT output for an input
frequency from the DDS of (103 * 97656.25) = 10.05859375MHz, at the peak of the response for point 103.
Notice that the skirts have disappeared, as all the other point’s frequency responses have zeros at this frequency,
and that point 103 is the only point in the peak and its level is greater than the level for point 102 in figure 3.

10.0
4124

-1.764

-7 65

-13.54

1949

-25.3

-31.24

-37

-42 8

S S TRALMAN LA A AR AT T AT AR T T TV T R W T v o i T o T T Tt P MRt F TE it e It Gy T TV W T A R b

-54.74
60,6
-66.59
72,49

-78.24

Figure 5 — DDS at 10.058MHz , Rectangular window

9 V1.11105

T | T | e oy

—— 1 s e

100

4124
-1.764
-7 65
-13.54
-19.44
-23.3
-31.24
-37.14
za o

488

547

-Gi.5

-G .5

-T2

-TE.24

-84.14

-QU.U_I - - = = = .

o afE g 171 256 34 427 i 597 653 TES G853 gl 1023
_ loa. 2 | Time [Lin [Fired Scale |

Figure 6 — DDS at 10.107MHz , Rectangular window

Figure 6 shows the FFT output for an input frequency from the DDS of (103.5 * 97656.25) = 10.10742188MHz,
this half way between the adjacent points. The skirts are back, and the peak is shared equally between points 103
and 104 and both are 4dB’s down from the peak level shown in figure 5.

The output frequency response of the FFT is just as expected for a rectangular window, the FFT block is
working well, but what most applications require is to identify a frequency component measure its level and also
identify any low level signals. The rectangular window located the frequency to the nearest point but the level
was in a 4dB bracket, and depending on the signal frequency the skirts could mask any low level signals.

To overcome this problem a non rectangular data window can be used, in this example there are a set of shading
coefficients for a Kaiser-Bessel window with alpha=3 stored in ROM on the FPGA. These coefficients can also
be found in the ’k_b_window.coe’ file in the Src directory in a form suitable for loading into a Xilinx ROM
CoreGen block.

Kaiser-Bessel Responce

-20

-30

MAGNITUDE (dB)

-40

-50

-60

-70

— paint 101

—— puint 102
/ \ \ point 105

10 V1.1 110>

Figure 7 — Kaiser Bessel functions

Figure 7 shows the magnitude response for three adjacent points for a Kaiser Bessel window, the peaks are much
broader than the Sinn(x)/x response, so the FFT output will be in more than one point but now the error in the
measured level is down to about 1 dB. The first side lobe of the Kaiser-Bessel function is 69dB’s down on the
main lobe and successive peaks roll off at 6 dB’s per octave so that the skirts are no longer noticeable.

= T e W T N L P ——— wl

100

4124

-1.764

-7 B8

-13.5

-19.44

-25.5

-31.24

=37 14

42,9
-48 84
-54 7
B0 6
6.5
72,4

-75.24

Figure 8 — DDS at 10.0MHz , Kaiser-Bessel window

Figure 8 shows the FFT output for an input frequency from the DDS of 10.0MHz, notice that the main lobe is
broader but the skirts have gone.

At this point try increasing the DDS output frequency above Fs/2, the FFT still works with less than two
samples per cycle because of the Phase and Quadrature nature of the data.

10.0

4124

-1.764

-7 B5H

-13.534

19.4]

-25.534

-31.24

=37 14

-42 .54

-45 .5

-54 .7

-6i0.6

-6E.54

-72a4

Figure 9 — ADC-A at 10.0MHz , Kaiser-Bessel window

Figure 9 shows the FFT output obtained by connecting a RF signal generator to the ADC-A input of the
HERONIO2V2 with a frequency of 10.0MHz and an output level of +5dBm, this is equivalent to an input level
of 2Volts peak to peak into the standard input impedance of the I02V2 of 200 Ohms, and selecting the Signal

11 V1.11105

Generator input for the FFT with a Kaiser-Bessel window. The 10MHz lobe looks very like the output obtained
with the DDS, but there are two main differences in the output. Both of these differences are because when the
signal generator input for the FFT is selected the Quadrature input sample values are set to zero. The negative
frequency components of the FFT output no longer cancel out when the magnitude is calculated so there is a
second lobe at 90MHz. Setting the Quadrature input sample values to zero also lowers the effective input signal
level to the FFT which is reflected in the output level being reduced by 6dB’s.

Change the output frequency and level of the signal generator and observe the effect on the output of the FFT.

The last input option to the FFT is from RAM in the FPGA this allows any function to be used, the example
software asks for a file name to download into the FPGA’s memory block over the HERON interface. There are
* dat files in the dsp directory that contain suitable data, more information on these files is at the end of the end
of the ‘FFT Example Specification’ section. New files of this type can easily be generated for a forward FFT by
calculating the values of the required waveform for both the Phase and Quadrature and saving them to a file, an
example of this is shown in a commented out section of ‘fft_example.c’. To generate a file for use with the
inverse transform it is easiest to capture the FFT output values when a forward transform is being performed.
The Format of the data read and written over the HERON interface is the same, Phase in the least significant half
word and Quadrature in the most significant half word, so by saving the forward FFT output directly to a file it
can be loaded back into the memory for an inverse transform.

The signal energy for the frequency domain representation of a sine wave is low as it is effectively a single
valued spike, so the sine output of the inverse FFT will have a relatively low amplitude. A gain of 64 has been
implemented in ‘fft_example.c’ when the inverse transform is selected to counter this. In the program
‘fft_example.c’ the Phase data for an inverse transform is located in the integer array ‘chadata’, and the
Quadrature data in the integer array ‘chbdata’.

The forward FFT output is a direct representation of the time samples in the frequency domain, so if the output
of a Kaiser-Bessel windowed forward FFT is used for an inverse FFT the sine wave output will have the window
shading.

If the forward FFT is of the sum of two sine waves it will produce two peaks in the frequency domain, which
when the inverse FFT is performed will produce a sum of sine waves time sequence, but if one of the peaks is
removed in the frequency domain prior to being loaded into memory that frequency component will not be
present at the output of the FFT in the time sequence. It has been filtered out.

12 V1.11105

Host based Example software

HEART carrier like HEPC9

If you have a HEART based module carrier like HEPC9, you can run the Host based example code with your
HERON-IO2 module fitted to any slot. Then you need to configure the HEART connections between the
module and the Host using HeartConf. This is done from inside the hegraph program for you using the network
file that is in the same directory as the host example software.

HEPCS carrier

If you have an HEPCS, then you must fit your HERON-IO2 module to the first HERON slot as this is the only
slot that has a FIFO connection to the Host machine. In this case the FIFO number the module uses is FIFO #1.

Host example : What it does

We supply a pre-compiled Windows program for the PC, which can be used to communicate with the HERON-
102, and to gather the data captured onto the PC where it is displayed.

The program is called ‘hegraph.exe’ and it is located in the ‘host’ sub-directory of this example. This example
can be used both as a confidence check and a starting point for your development.

The ‘hegraph.exe’ program is supplied as an exe file, but we have included the Microsoft Visual C/C++ 6
project of this program as well. This allows you to change it and re-compile it as you want.

After you have loaded the correct bit stream into your HERON-1I02 module, the “DONE” LED should be
switched off showing that the configuration was successful. Also The USER LED4 should flash about once per
second, showing that the clocks are properly running in the FPGA. If the DONE LED is off, but the LED is not
flashing it may be because the Delay Locked Loop used in the clock circuit of the FPGA needs to be reset. You
can do this using the utility under “programs > HUNT ENGINEERING - API board RESET” if you want,
but such a reset will also be made when you start the hegraph program.

When you run the hegraph program you will see a window appear, that has some control menus available.
Using these menus you will be able to start the program (which will send HSB messages to correctly set the
FIFO numbers that the FPGA should use, and also configure HEART if you have a HEART based module
carrier). It will also capture and display the data coming from the I02V2.

By selecting the ‘Control” on the control menu this brings down a selection of four functions. Selecting one of
these functions sends a control message to the FFT example on the IO2V2 via the HSB to select an input
source for the FFT.

Function 1:- ADC output connected to the FFT.
Function 2:- DDS output connected to the FFT.(default frequency 10.0MHz)
Function 3:- ADC output connected to the FFT.
Function 4:- ADC output connected to the FFT.

The program grabs blocks of data from the HERON interface. Each 32 bit word contains the output from the
FFT in the form of the Phase component in the least significant half word, and the Quadrature component in the
most significant half word.

The example2.c program loops round and gathers blocks of FFT output data from the FPGA over the HERON
interface. This is in the form of Phase and Quadrature components. Example2.c also calculates the magnitude
of each point of the FFT output by calculating the square root of the sum of the squares of the Phase and
Quadrature components.

The hegraph program displays these FFT output values, with the output magnitude displayed in both channel 1
and channel 2. Figure 10 shows a output from the hegraph program for a signal generator source connected to
the ADC-A input of the IO2V2 at a frequency of 10MHz and a level of +5dBm. The window used is Kaiser-
Bessel.

If the signal source is changed to the DDS output, by selecting ‘Function 2°, the output level displayed will
approximately double. This is because the DDS output has both Phase and Quadrature components while the
ADC-A output has only a phase component. The Quadrature input to the FFT, when the ADC-A input is
selected, is set to zero.

13 V1.11105

The hegraph program does give the option of taking a Fourier Transform of each channel of data but in this
case it will not produce meaningful results.

wiHeGraph =] 3
File Option: Graph Control Help
Data Data
Channel 1 Channel 2
FT FT
FFT O/P MAGNITUDE FFT O/P MAGNITUDE

Figure 10 — Example of Host Software FFT Output

14 V1.11105

Implementation of the FFT

This example is based on a Xilinx CoreGen high performance 1024-point complex FFT/IFFT block, and uses
other CoreGen blocks such as memory, DDS, etc to interface the FFT.

There is now another CoreGen FFT block available (28/03/03) which gives a complex FFT/IFFT for up to 16384
points with data sample precision from 8 to 24 bits. No attempt has yet been made to use this new core but from
its data sheet it has three operating modes.

Radix-4 streaming I/O: This is the fastest mode but requires the most core space. Using the core space remaining
after the HUNT ENGINEERING Transient Analysis Example 2 has been generated for a Virtex II XC2V1000 as
a guide for the space still available for the FFT, a 2048 point by 16 bit would fit and would require 2048 clock
cycles to complete the transform. This is equivalent to 20.48 micro Seconds with a 100MHz clock.

Radix-4 Burst I/O: This is a slower mode but uses less core space. Again using the core space left after the
HUNT ENGINEERING Transient Analysis Example 2 has been generated as a guide, a 8192 point by 16 bit
FFT should fit requiring 22581 clock cycles to complete data load and transform. This is equivalent to 225 micro
Seconds with a 100MHz clock. Another option in the available core space would be a 2048 point by 24 bit FFT,
which would take 5169 clock cycles, equivalent to 51.96 micro Seconds with a 100MHz clock.

Radix-2 Minimum Resources: This mode goes up to 1024 points by up to 24 bits and would fit in the available
space. It would require 6215 clock cycles to complete data load and transform, equivalent to 62.15 micro
Seconds with a 100MHz clock.

The above estimation of which of the FFT’s would fit into the XC2V 1000 on the HERON 102V2 is based on the
resources available in the FPGA relative to the FFT’s requirements from the data sheet. The limiting factor tends
to be the amount of block RAM available.

If the FFT was not limited by the XC2V 1000 on the I02V2, but was implemented in a module with larger
FPGA’s then the minimum size of FPGA, from the FFT plus Example2 requirements, would be:-

Streaming 1/O

8192 x 16 FFT would require an XC2V3000
8192 x 24 FFT would require an XC2V6000
Burst I/O

8192 x 16 FFT would require an XC2V1000
8192 x 24 FFT would require an XC2V 1500

The data sheet for the FFT claims a 16384 point transform in burst I/O mode but no resource requirements are
given for this in the data sheet.

15 V1.11105

FFT Example Specification

Inputs: There are three possible signal inputs to the FFT:-

ADC-A

Sample Frequency: 100Msamples per Second

Sample Resolution: 12bit signed.

Analogue Input: +/- 1Volt Max into 200 Ohms

Direct Digital Synthesiser (DDS)

Sample frequency: 100Msamples per Second

Sample resolution: 16 bits full complex signal

Signal frequency: Default 10.0 MHz or as defined over the HSB
Signal amplitude: Always maximum (16bit signed).

FPGA Memory

Sample frequency: 100Msamples per Second

Sample resolution: 16 bits full complex signal

Signal: As defined by the values loaded over the HERON interface

Direct Digital Synthesiser(DDS):

DDS Frequency(default): 10.0MHz
Frequency Resolution(delF): 1.5Hz
Spurious Free Dynamic Range: 60dB

Sine and Cosine output: 16 bit signed
Frequency Control : 26 bits default to give 10MHz, the value is held in registers at HSB
addresses 5,6,7 and 8.

How to calculate the 26 bit value to be loaded into these registers is described in the Xilinx DDS data
sheet.

Window Multiplier:

Input Resolution: 16 bit signed on A input. (signal)

16 bit unsigned on B input.(window coefficients)
Output Resolution: 16 bit signed.
One multiplication per sample clock cycle (100MHz)

Kaiser-Bessel Window ROM:

ROM size: 1024x16

Window coefficient file: k b window.coe

16 V1.11105

The window is the same for both phase and quadrature channels so only one set of coefficients is

required. For a rectangular window the coefficients become Oxffff across the whole window.

HSB interface registers:

Address 0: HERON input fifo number select.
Address 1: HERON output fifo number select.
Address 2 and 3: Number of output points to be transferred over the HERON interface.

HSB address Description

HSB address 2 LS 8 bits (D7 —DO0)

MS 2 bits (D9 — D8)
MS--XXXXXX(D9)(D8)--LS

HSB address 3

HERON Interface number of output points

When address 3 is written to it initiates the transfer of the number of points defined.

Address 4: Bits written to this register perform three control functions.
D7,6,5,4 D3 D2 D1 DO
X FORWARD WINDOW INPUT
FFT SELECT SELECT

Address 4 Control byte

Bits DO and D1 control which signal source is selected for the FFT

D1 DO SIGNAL SOURCE
0 0 ADC-A
0 1 DDS
1 0 MEMORY
1 1 ADC-A

Signal Source control bits

17

V1.11105

D2 WINDOW TYPE

0 Kaiser-Bessel

1 Rectangular

‘Window control bit

D3 FORWARD/INVERSE FFT
0 INVERSE
1 FORWARD

Forward/Inverse FFT control bit

The options denoted in bold type for address 4 are the default settings.

Address 5, 6, 7 and 8: DDS frequency control bits.
HSB address Description
HSB address 5 LS 8 bits (D7 — DO0)
HSB address 6 Next 8 bits (D15 — DS)
HSB address 7 Next 8 bits (D23 — D16)
HSB address 8 MS 2 bits (D25 — D24)
MS--XXXXXX(D25)(D24)--LS

DDS FREQUENCY CONTROL REGISTERS

Refer to the section on the DDS CoreGen block or the Xilinx DDS data sheet as to how this value is
calculated. The value is also calculated in ‘fft_example.c’.

Heron Interface:

The FFT example can use the HERON interface both to read and write data to the FPGA. Writes to the
FPGA load the (1024x32) signal source memory block.

The data read from the FPGA are 1024 point blocks of FFT output values.

The 32bit data words for both read and write across the HERON interface have the same format, the 16
bit Phase component in the Least Significant half word and the 16 bit Quadrature component in the
Most Significant half word.

18 V1.11105

MS half word

LS half word

(16 bit Quadrature value)

(16 bit Phase value)

HERON Interface 32 bit Word Data Format

D/A Outputs:

Output Update Rate:
Digital Input:
Analogue Output:

Digital 10 Connector:

100MHz
14 bit binary

+/-1Volt max

This is used in the example to output a pulse to synchronise the FFT output on DAC-A with an oscilloscope

time base. The synchronisation pulse is output on (2)I/O0.

(2) /OO
4) 101

CLKINO (1)
GND (3)

(19)

GND (21)

CLKINI (5)
GND (7)
CLKI2 (9)
GND (11)
CLKI3 (13)
GND (15)
CLKOUT (17)
RT O

GND (23)

000000000000000O0

0000000000000O00O0

(6) /02

(8) /O3
(10) /04
(12) VO5
(14) 106
(16) VO7
(18) GND
(20) TIOUT
(22) T20UT
(24) R2IN
(26) R1IN
(28) DECL
(30) QECL

19

RT 1(25)
DECLB (27)
QECLB (29)

V1.11105

Files for Memory signal source:

There are five ‘.dat’ files included in the dsp folder which contain data in a form suitable for down loading to
the memory in the FPGA. The first two are for forward FFT’s and the second three are for inverse FFT’s.

Sine_5mhz.dat: Contains data representing a SMHz complex sine wave in the time domain.
Two_tone.dat: Contains data representing the sum of a 5SMHz and 18.5MHz complex sine waves in the
time domain.

Fft_op_Smhz.dat: Contains data representing a SMHz complex sine wave with a rectangular window in
the frequency domain.

Fft_op_two_tone.dat: contains data representing the sum of a SMHz and18.5MHz complex sine wave
with a rectangular window in the frequency domain.

Fft_op_10mhz.dat: Contains data representing a 10MHz complex sine wave in the frequency domain,
with a Kaiser-Bessel window.

20 V1.11105

FFT CORE GENERATOR BLOCKS

There are ten CoreGen blocks that have been generated particularly for this FFT example, to help show how each fits
into the example figure 10 is a block diagram showing where each block fits into the signal path.

HERON I/P
i ROM1024X16
RAMI1024x32 |
FFTMEM
>
DDS - MULTI6 j VEFT |—P
|
FFTMEM [—P»
ADC-A —p !
[} [}
i i
! !
! !
! !
! !
! !
! !
! !
! !
! !
e R e
! !
INPUTS . WINDOW | 1024 POINT FFT
i i

HERON O/P

?

FIFO1023X32

A

FFTMEMZ

Figure 11 -- CoreGen blocks in the data path

21

MULT MULT

ADDER

OUTPUTS

V1.11105

Direct Digital Synthesiser

The DDS is a Xilinx ‘CoreGen’ block which has a two page GUI to define the operation of the built core. If
further information is required there is a data sheet available by selecting the button at the bottom of the GUI.

Phase
Accumulator
f : T1
Phase Q1 Sine/Cosi
Increment Bap! Al Bow Bexy) Imkﬁne —~—0s(0(n))
W e om| O [Tom] T 1% em)
/T\ D1 Table Depth = 2Bot) $
’ s
B
clk clk fout = A8 fjK/2-)

Figure 12 - Block Diagram of DDS

In this example the phase increment value is registered in and then its value is added into the accumulator on
every cycle of the clock. The output value of the accumulator has a number of the least significant bits removed
by the slicer Q1. The remaining bits address the sine/cosine look up table T1.

D ital Synth

FIGURE 13 -- CoreGen DDS GUI Page 1

22 V1.11105

Output Width: 16Bits selected to match the FFT converter input width.
Function: ‘Sine and Cosine’ selected for full quadrature signal.

Negative Sine or Cosine options have not been selected for this example.
Memory Type: Distributed ROM selected.

Handshake Options: No handshake options are required for this example as the outputs are updating on every
clock cycle.

Clock Enable: The clock enable is not selected as the DDS is running at 100MHz Sample clock frequency.
Clear Options: Clear options are not selected for this example.

Pipelined: Pipelined option selected.

Layout: Create RPM option not selected

Direct Digital Synthesizer) h x|

Parameters | Bl core overview | Bl Contact| Bl web Links |

qu[Direct Digital Synthesizer
Data Width — Phase Angle Width
Iiﬁ Valid Range 326 I1EI Valid Range 3.10
— Phase Increment — Phase Offset
+ Register " Reglster
" Constant " Constant
|=l tHexvaite, MSEhrst) |l Hewsalue, MEBTrst
' Mane
— Phase Accumulator —— — Noise Shaping
Accumulator Latency None
" Zero Cycle & One Cycle * Phase Dithering

" Taylor Series Corected

| st - | Page 2 of 2

FIGURE 14 -- CoreGen DDS GUI Page2

Data Width: This is the width of the input data bus used to define the phase increment, and has been set to the
full accumulator width of 26 bits.

Phase Angle Width(Blut): This is the number of bits used to address the sine/cosine look up table and is
directly related to the Spurious Free Dynamic Range by 6dB’s per bit. So 10 bits gives the required 60dB
Spurious free dynamic range.

Phase Increment: The register option has been selected so that the Phase Increment value is loaded via the 26
bit input data bus, using the Write Enable(WE). In this example it allows the frequency to be updated via the
HSB. The Phase Increment is defined by the relationship:-

DelPhi = (Fout / Fclk) * 2~(Blut)
With Fout = 10MHz; Fclk = 100MHz; and Blut = 10bits
Then DelPhi = 102.4

23 V1.11105

This real number now needs to be converted into a binary number that con be loaded into the DDS via the data
input. The value at the output of the accumulator is 26 bits of which only the most significant 10 bits are used to
address the sine/cosine look up table and are the integer part of ‘DelPhi’, the remaining 16 bits are the fractional
part. To generate the binary number to represent 102.4 :-

Multiply 102.4 by 2(16) = 6710886.4
This has in effect moved the point by 16 binary places

Convert to binary =1100110 01100110 01100110
But this is only 23 bits as the most significant bits are zero, so the full 26 bit value is:-

0001100110 0110011001100110

Phase Offset: Not selected for this example.

Phase accumulator: 26 bit width with single cycle latency selected. The number of bits is determined by the
frequency resolution relative to clock frequency:-

Bpa = log(Fclk / delF) / log(2)

With Fclk = 100MHz and delF = 1.5Hz
then Bpa = 26bits

Noise Shaping: Only 10 bits are used to address the Sine/Cosine look up table in this example out of the Phase
accumulator width of 26 bits, this leads to an error between the ideal value and the value looked up in the
Sine/Cosine look up table. At the output of the FFT this will look like noise with unwanted spectral lines at least
60dB down on the wanted signal, but this can be partially overcome by adding Phase Dither which has the effect
of spreading the unwanted spectral lines over the whole band. Phase Dither has been selected for this example.

24 V1.11105

RAM 1024x32

This RAM is used to store a signal shape for input to the FFT. The Values stored in the memory have been transferred

across the HERON interface.

Dual Port Block Memory KI

B Farameters | Bl core ovendew | B contact| Bl web Links |

Dual Port Block Memory

logiC'FE

Component Mame ﬂ‘ﬂm1 024032

~ Memaory Size

—
- iidth &] 3z Yalid Rangs: 1..256 Crapth A |1EI24 Walid Range: 2, 65536
— wWidthB (|32 ‘PI DepthB 1024
: — PortAOptions
: Configuration T Read And Wit = Wfrite Ok " Read Only
S Wi'rite Mode i® Fend Afef Wrile Reod Hefarn Wi hlo Read On A
o ~ Porl B Options
— Configuration " Read And ¥irite " ArdritE iy & Read Only

write Mode = Fead Afteriilie " Head Hefore Wille o Fead On wrile

FIGURE 15 -- CoreGen Block RAM GUI page 1

Memory Size: The memory size used for this example is 1024, to match the number of points in the FFT, by 32
bits, to match the width of the HERON interface. In each memory location the Phase component is stored in the
Least significant half word, and the Quadrature component in the Most significant half word.

Port A options: Port A is used to write the data into memory from the HERON interface.

Port B options: Port B is used to read the values for input to the FFT.

Crpal Port Block Memory "EI
Bl Parameters | Bl core Overview | Bl contact| [l Web Links |
! ,cﬁgfgg Dual Port Block kMemory
— Port A Design Options
Optional Pins I Enable Pin I Handshaking Pins
Register Options I Ragister Inputs
— Output Register Options
Addifional Outpul Pipe Stages Iu, .,i I SIMIT pin (syne. inifialization of output registers)
RN I
— Plin Folarty
Atllve Clock Edge &~ Rising Edge Triggered Falling Edge Triggered
Enabile Fin & Active High i Aciive LLow
Wirite Enable o pctive High © Active Low
|raifi sl izadicn Fin & Activee Hiph € fentivie oy
FIGURE 16 -- CoreGen Block RAM GUI page 2
25 V1.1 1105

Port A Options: None of the Port A options has been selected.
Port A Pin Polarity: Rising edge triggered for the active clock edge, and active high Write Enable.

Dral Pork Block Memory '_‘Ix

Bl Parameters | ll core overview | Bl contact] Bl vweb Links |

I m—w Dual Port Block Memory

— Por B Design Oplions

optonal Pins I~ Enable Pin I™ Handshaking Pins

Register Dplions ™ Register Inputs

— Dutput Reglstar Options
Additionsl Output Pipe Stages FJ'_B I SIMIT pin (sync. initialization of output registers)
Imd Walue (H e I a

— Pin Polarity
Active Clock Edge i Rising Edge Triggarad " Falling Edge Triggerad
Enzhie Fim o Active Higl " Actlve Lo
‘Write Enable = Actne High T Active Low
|hltatzstion Pin £ active Hiah € Anilve-Low

— Primifive Selaction

= Optimize For Arga " Satect Prirmithes 16kl B

FIGURE 17 -- CoreGen Block RAM GUI page 3
Port B options: None of the Port B options has been selected.

Port B Pin Polarity: Rising edge triggered for the active clock edge, and active high Write Enable.

Dual Port Block Memory KI

Bl parameters | Bl core overview | Bl contact| Bl wieb Links |

W Dual Port Block Memory

« Inrial Contents

Global Init Value |GEIIIIEIIZIIZIUEI (Hex Value)

I Load Init File

Load File I I {coe File)

— Infarmation Panel

Address ¥Width A 10

Address ¥Width B 10

Blocks Used 2

For & Read Pipeline Latancy 1

FPort B Resad Pipeline Latency 1

| s (TR | B e

FIGURE 18 -- CoreGen Block RAM GUI page 4
Initial Contents: All of the RAM is initialised with zero’s.

26 V1.11105

Multl6

This multiplier is used to apply the window function to the input blocks of data. Port A is connected to the signal
data, which could come from either ADC-A , the DDS or from the Memory input. This is 16 bit signed data. The
other port, Port B, is connected to the ROM that contains the window coefficients, this is 16 bit unsigned data.
There are two of these multipliers used in the example, one for the Phase data and one for the Quadrature data.

PAulbiplier

logiC i Fr

x|

Bl rarameters | Bl core ovarview | B contact | BB vweb Links |
Multiplier
Component Name: Imulu [
— Multiplier Type
& Parallel " Sagueantial
I Constant

Multiplier Type:

MlLiltiplier Construclion

i Uza LUTs o+ Usze Muliplier Blocks (virtex |13

Wirtex2 mulliplier Optirmization

= Spaad " Area

— Layaut

" Create RFM

Shape
r &+ Rectangular Shape { Trangular Facking

FIGURE 19 -- CoreGen Block Multiplier GUI page 1

This multiplier has to handle a clock rate of 100MHz as this is the rate at which signal data

will be presented at its input, to achieve this the multiplier architecture is made parallel. As this example is using
a 102V2 with a Virtex Il FPGA the dedicated multiplier blocks are used. The multiplier is optimised for speed.

Layout: Create RPM has been selected, with a rectangular shape.

27

V1.11105

Plulbiplier

Bl rarameters | Bl core overview | Bl contact | Bl web Links |

Multiplier

tagiC \FE

— Input Options

— Port A

 Register Inpuis

Diata Tvpe
= Signed

Wit |1E valld Range: 264

i Unsigned

" Controlled By Fin

— PortB

Diata Type
" Signed

Width: |1ﬁ Valld Range: 1. 64

= Unsigned

FIGURE 20 -- CoreGen Block Multiplier GUI page 2

Port A input options: Port A is 16 bits wide and expects signed data, this is the signal data. The input data is

registered.

Port B input options: Port B is 16 bits wide and expects unsigned data, these are the window coefficients from

the ROM. The input data is registered.

Pl plliesr

Bl rarameters | Bl core overview | Bl contact| Bl web Links |

lagiC L FE

Multiplier

— Dutput Optlons

Wlidith; i1 5] Walid Range: 1.1 28

= Ragisterad " Mon Registerad " Bath
— Handshaking Signals
I ND I RFD I~ RDY

FIGURE 21 -- CoreGen Block Multiplier GUI page 3

x|

Output options: The output width for the multiplier has been set to 16 bits to match the width of the FFT input
data. The output is registered. There are no handshake options selected as the multiplication rate is one per clock

cycle.

28

V1.11105

Bl rarameters | Bl core overview | Bl contact| Bl web Links |

lagiC' {FE

MERRR R

Pipeline: Maximum pipelining has been chosen because of the speed at which the multiplier is to operate.

Multiplier

— Pipaline

= paximum Pipelining " Minimum Pipelining

— Register Options

™ Asynchronous Clear I~ Syhchronous Clear
I Clock Enable

CE Overrides

= CE Overrides SCLIIR SCLR Overfides CiE

— Information

o utp ol Latency Z

FIGURE 22 -- CoreGen Block Multiplier GUI page 4

Maximum pipelining helps with the speed but will increase the output latency.

Register options: There is no requirement for extra control signals for the registers in this example.

29

V1.11105

ROM 1024x16

This block of ROM is used to store the window coefficients for the Kaiser Bessel Window. Only one block is required

as the same coefficients are used for both Phase and Quadrature signals.

Bl Parameters | Bl core overview | Bl contact| [l web Links |

x|

! iﬂ'ﬁiﬂqﬁ Single Port Block Memory
Component Mame rh:rr'n‘l 024x16
— Port Conflguration
" Read And \Write o Read Onky
— Memary Size

Width I 16 Valid Range 1..256
Depth I 1024 Valid Range: 2.131072

— Wirite Mode

i Read After Write " Read Befora Write " Mo Read On \Airite

=Ea0k | HHIIPI Fage 1 or4

FIGURE 23 -- CoreGen Block ROM GUI page 1
Port Configuration: As this is to be a ROM block the port is configured as read only.

Memory Size: The data width and depth has been made to match the input of the FFT, 1024 by 16 bits.

Write Mode: Does not apply for Read only memory.

Single Port Block Memory

B parameters | Bl core overview | Bl contact| Bl wwen Links |

[':@RE Single Port Block Memory

— Primitive Selection

& Optimize For Area ~ Select Primitive |1F.ks1 -]

— Design Options

Optional Pins: I~ Enable Pin I™ Handshaking Pins
Register Options: I Register Inputs
Cutput Register Oplions

Additional Output Pipe Stages |0 =
™ SINIT pin (gync. reset of output registers)

[mit'value dHex Il'.

<Back | INeat» | Page 2 of 4

FIGURE 24 -- CoreGen Block ROM GUI page 2

30

V1.11105

Primitive Selection: Optimise for area selected.

Design Options: None of the options has been selected.

Sinigle: Port Block Memory x|
Bl Paramsters | B core overview| Bl contact| Bl web Links |
W Single Port Block Memory

— Implementation Options
I™ Limit Diata Pitch |1a -I

~— Pin Polarity
Acthve Clock Edge % Rising Edge Triggered O Falling Edge Triggerad
Enable Fin = Acfive High " Active Low
‘Write Enable * Artive High ™ Active Low
[ritialization Fin = Actlve High " Active Low

=Back |E'ﬁ36ii;1 Page 3 o4
Ganerate Dismiss DataSheet. | versionino. | T Display Cora Footprint
FIGURE 25 -- CoreGen Block ROM GUI page 3
Implementation Options: Limited data pitch not selected.
Pin Polarity: Clock rising edge triggered selected. The write enable options do not apply for ROM.
single Port Block Memory il
Bl Parameters | Bl core overview | B contact| Bl web Links |
! FEE%‘?QE Single Port Block Memonry
— Initial Contenls
Glabal init Value;

Iﬂ (Hex Walua)

¥ Load Init File

Do 2w 2iM_examplelSretk_b_window coe {.coe File)
— Information Fanel
Address Widih 10
Blocks Used y|
Read Pipeline Latency: 1
] i

FIGURE 26 -- CoreGen Block ROM GUI page 4

31

V1.11105

Initial Contents: The initial values loaded into the ROM are defined by the file ‘k_b_window.coe’ that is
located in the ..\Src directory

32 V1.11105

FFTMEM

This memory block is used for the input/working memory for the FFT CoreGen block in Triple Memory Space(TMS)
configuration. In this mode one pair of blocks of memory, Phase and Quadrature, is used to capture data, while the other
pair are used as working memory for the FFT. When the FFT is completed the rolls of the memories are swapped and
the input memory now becomes the working memory and what was the working memory now captures a new block of
input data.

Dual Port Block Memaory 2 'E‘I
“ Faramelers I Bl core OrI.rBMEwl Bl Gl:lnlal:tl = -RRTETH I.Jnkal

WCFE;"RE Dual Port Block Memory

Component Mamae |i'l'tmer‘n1 024x16

— Memary Size
\Wiidth & I 18 Walid Range: 12586 Depth A i‘l oz4 Walid Range: 2.131072
Width B |18 - Depth B 1024
— Fort A Dptions
Configuration " Read And Write o Wit Only i Read Only
Wirite Mode = ReadAfter Wiite " Read Hefors Write Mo Read tin YW rita
— Port B Options
Configuration = Road fod Wite C Wte Oty " Read Only
Wirlle Mode " Read After Write " Read Before Wrile 1+ o Read O Write

FIGURE 27 -- CoreGen Block fftmem GUI page 1
Memory Size: This is determined by the FFT Block and is 1024 by 16 bits.

Port A Options: Port A of the dual port memory is used by the FFT CoreGen block to write intermediate values
back into the RAM when the block is being used as working memory. This port is write only.

Port B Options: Port B is used for both read and write. The FFT CoreGen block reads values from this Port to
perform the FFT in the working mode, but when in the input mode the Port B is used to write the new block of
data values into RAM. This Port is Read and Write, with the no read on write option selected.

Dual Port Block Memiory Kl

B rarameters | Bl core overview | Bl contact | Bl vveb Links |

W‘:ﬁé‘:ﬁﬁ Dual Port Block Memory

— Port A Design Options

Optional Pins = Enable Pin ™ Handshaking Pins
Register Oplions I Register Inputs
— Dutput Reglster Optioh s

Additional Output Pipe Stages I“D'E I SIMIT pin (sync. initialization of output registers)

[nit Yatue e I L

— Pin Polarity

Active Clock Edge Rising Edge Triggered " Falling Edge Triggered
Enable Pin &~ Active High " Active Low
Wirite Enable = Active High T Active Low
Inltslizatian Fin o~ Adtiva High X Active Low.

FIGURE 28 -- CoreGen Block FFTMEM GUI page 2

33 V1.11105

Port A Options: These are defined by the requirement of the FFT CoreGen block and an enable pin is required.

Pin Polarity: Rising clock edge triggered and both the ‘enable’ and ‘write enable’ with active high have been
selected.

Cual Port Block Memory _ﬂ

Bl Parameters | Bl core overview| B contact| Bl web Links |

W Dual Port Block Memory

— For B Design Options

Optional Flns ¥ Enable Pin I Handshaking Fins
Registar Options I Register Inputs
== — Dutput Register Options
o Additional Output Pipe Stages IE I SINIT pin {(sync. inftialization of output reglsters)
= Init ¥ alue (Hex IL
— — Pin Polarity
— Active Clock Edge = Riging Edge Triggerad " Falling Edge Triggered
— Enahle Pin & Acthve High © Actve Low
] Wirite Enable = Active High 7 pctive Low
i Infiadzation Pir = Anive High C Activa Low

Frimitive Selection
rﬁ Optimize For Area " Salact Primitive [een =1
FIGURE 29 -- CoreGen Block FFTMEM GUI page 3

Port B Options: Only the ‘enable’ pin option has been selected.

Pin Polarity: As with Port A active rising edge clock and active high for the ‘enable’ and ‘write enable’ has
been selected.

Primitive Selection: Optimise for area selected.
[DualPort Block Memory x|

Ell Farameters | Bl core overview | Bl cormact | BBl vweb Links |
lag iﬂ‘ﬁé‘ﬁﬁ Dual Port Block Memory

— Inltial Contents

Global Init Value [ooon (Hex Value)
I Load inil File
LLoad File I I {.coe Fila)

— Information Panel

Address Widlh A 10
Address Widlh B 10
Blocks Used 1
Fort & Read Pipeline Lalency 1
Fart B Read Pipaline Latency 1

FIGURE 30 -- CoreGen Block FFTMEM GUI page 4

Initial Contents: The memory has an initial value of zero.

34 V1.11105

FFTMEMZ

This memory is used for the output values from the FFT, two blocks are used one for the Phase and the other for

the Quadrature component.

Dual Port Block Memory -

contact| [web Links |

Dual Port Block Memory

E& rarameters | Core Overview

logiC . FF

x

Component Name: [Mmemz1024x16

— Memary Size

Depth A 11024 Valid Range: 2.131072

Width A |16 Valid Range: 1..256

Width B: [1E vI Depth B: 1024
— Port A Options
Configuration:; " Read And Write % Wirite Only Fead On
Yyrite Mode: £ Fegd Afer Wiite " Hegd Sefure Write ' No Bead O \Wite

— PortB Options

Configuration; " Read And YWrite " Write Gnly * Read Only
Yyrite Mode: " Read After Wirite " Read Before Writa * Mo Read On Yrite
— Initial Contents
Global Initvalug: |0D0D (Hex Value)
™ Load InitFile
(.coe Fila)

Laiad File | |

Design Options... |

Address Width B:

— Information Panel

Address Width A 10 10

FIGURE 31 -- CoreGen Block FFTMEMZ GUI

Memory Size: Both port A and B are set up to match the Xilinx FFT CorGen block requirement of 1024 by 16
bits.

Port A Options: Port A is write only as this is the port that the FFT CoreGen block uses to output the results
into the memory.

Port B Options: Port B is read only as this port is for the user to read the results from the memory.

Initial Contents: The contents of this memory block is initialised to zero.

35

|»

=

V1.11105

VFFT

This is the 1024point complex FFT/IFFT CoreGen block. In this example it is used in the Triple-Memory-Space (TMS)
configuration which allows the FFT core to be supplied with data 100% of the time and no potential computation cycles
are wasted. This requires two banks of input/working memory each with both Phase and Quadrature components, the
FFTMEM CoreGen blocks have been used for these areas of memory. The output memory, ‘Output memory Z’ is the
same size as the input/working memory blocks but is configured differently, the FFTMEMZ coregen blocks have been
used for this area of memory. Two FFTMEMZ blocks are required, one for the Phase and the other for the Quadrature
compoment.

The VFFT CoreGen block does require the loading of the input data and the reading of the results to be synchronised to
the core operation.

. FFT Core
Input™Warking e
e Memory
- %
Cutput
\ FFT - i
x(n) i Memary — X(k)
Input Data InputWoaorking
P -

Memaory
¥

FIGURE 32 -- Block diagram of TMS structure

The VFFT core does not have any generate options other than the FPGA device that it is going to be fitted into.
Once the core has been generated, how the core is connected will determine which mode it is going to operate in,
figure 32 shows the connections required for a TMS configuration.

FFT CORE OVLFO —
RESULT (— RESULT
CLK— CLK DONE —
CE— CE EDOME |—
RS — RS 10—
START— START ElO |—
FWD_INV — FWD_INV BUSY (—
SCALE_MODE— SCALE_MODE WEA —
“'—10_MODED WEA X |— WEA_X
RAM.X 0" — 10_MODE1 WEA ¥ |— WEA_Y
[TWAG MRD — MRD WEB_X [— WEB_X
WEA_X —WEA REAL MWR —{ MWR WEB_Y — WEB_Y
EHA_X —ENA —HiC ENA X [— ENA_X
‘0 —RSTA DOA[1&0] —NiC DR[15:0]— DI_R[15:0] ENA_Y [— ENA_Y
CLK —=CLKA DI[15:0]— DI_I[15:0] BAMK — BANK
ADDRW_X[9:0] —ADDRA[2:0] YK_R[15:0] — YK_R[15:0]
KK_[RA[15:0] —|DIA[15:0] = YK _I[15:0] — YK_I[15:0]
m| o XK_R[15:0] |— XK_R[15:0]
WEB_X —WEB KK I[15:0] |— XK_I[15:0]
‘1" —ENEB ADDRR_X[9:0] — ADDRR_X[9:0]
‘0" —RsTB DOB[15:0] ADDRR_Y[8:0] — ADDRR_¥[9:0]
CLK —» CLKB ADDRW_X[9:0] |— ADDRW_X[9:0]
ADDRR_X[9:0] —ADDRE[9:0] ADDRW_Y[9:0] — ADDRW_Y[9:0]
KN_[RA[15:0] —DIB[15:0] — INDEX[8:0] |— INDEX[2:0]
RAM ¥ RAM Z
[TWAG
WEA_Y — WEA REAL RESULT —|WEA REAL
ENA_Y —{ENA —nic ‘1" —ENA —
‘0 — RSTA DOA[15:0—N{C ‘0" —RSTA DOA[15:0] —
CLK —= CLKA CLK —f= CLKA
ADDRW_Y[9:0] — ADDRA[S:0] INDEX[9:0] —{ADDRA[9:0]
XK_[RI[15:0] —{ DIA[15:0] o YK_[R/][15:0] — DIA[15:0] =
m| = £
WEEB_Y — WEB —[WEB
‘1" — ENB ma —{ENB —
‘0 —| RSTE DCOB[15:0} ob DI[15:0] —{RSTE DOB[15:0] —
CLK —f» CLKE L limb sel - pR[15:0] —» CLKB
ADDRR_Y[9:0] — ADDRB[9:0] USER | —]ADDRBIG:0]
XMN_[RAN[15:0] — DIB[15:0] — meE L DIB[15:0] et
S INTERFACE

FIGURE 33 -- Block diagram of TMS connections

36

V1.11105

FIFO1023X32

This fifo block is used buffer the data between the output of the FFT output memory to the HERON output interface.

Asynchronous FIFO

Bl rarameters | Bl core overview | Bl comact | Bl vweb Links |

I iﬂ:ﬁ"ﬂ: Asynchronous FIFOD
Component Marme | [0 025332
— Meamory Typa
= Block Mermory T Distributed Memary

— Data Port Parameters

InpUL Dats Width | [32 wvalid Range | 1..256
FIFD Depth | [1oz23 =]

— Cptional Flag

I Almost Full Flag Handshaking Options ... I
I almost Empty Flag

— Data Count

I wirite Data Count Viite Drata Count VWidth | 3
Synchronized with ¥Write clk)
T Read Data Count Hemd Data Catint it IL

(Synchronized with Read clik
FIGURE 34 -- CoreGen Block fifo1023x32 GUI
Memory Type: The memory type selected for the fifo is block memory.

Data Port Parameters: The input data width is 32 bits. The complex output data from the FFT has 16 bit Phase
data, which is fitted into the least significant half word, and 16 bit Quadrature data which is fitted into the most
significant half word. The fifo depth selected from the options available is 1023 words.

Optional Flag: Almost full and almost empty are not selected.

Data Count: The read and Write data count options are not selected.

37 V1.11105

MULT

This CoreGen block is used to generate the squares of both the Phase and Quadrature components of the output of the
FFT so that the magnitude squared can be calculated for output to DAC-A on the HERON I02V2.

Petultiplier

Bl rarameters l Bl core cverview | Bl contact | Bl vweb Links |

ﬁ-‘&"‘f‘iﬂﬁﬁ Multiplier

Cormponent Rame; [t
— Multiplier Type

~ Parallal i Sequential
I Constant
— Multiplier Construction

T Use LUTs = Use Multiplier Blocks OVitex 113

— Wirtex2 Multiplier Qptimization

= Speed " Ares

— Layout

M Create RPM

Shape

= Rectangular Shape ¢ Triangular Packing

FIGURE 35-- CoreGen Block MULT GUI Page 1

Multiplier Type: The multiplier type selected is parallel as the rate required is one every 100MHz clock cycle. The
multiplier blocks in the Virtex II have been selected to implement this multiplier, and the optimisation selected is for
speed.

Layout: Create RPM has been selected with a rectangular shape.

Ftaalbiplier

Bl Farameters | BBl core overview | BBl contact | BE vweb Links |

Lt -
1og FCE&R-E Multiplier
— Input Options
~ Register iInputs
— Porta
Witk I‘l 151 “Walid Range: 2..64
Data Type
r ' Slgned O Unsigned " Controlled By Fin
— FortB
Wi tr I‘l 5] YValid Range. 264
Data Type
~ Signed LUnsigned

FIGURE 36 -- CoreGen Block MULT GUI Page 2
Input Options: Both the inputs to the multiplier are registered, and are set up identically for 16 bit signed inputs.

38 V1.11105

PAulLiglier

Bl rarameters | Bl core overview | Bl contact| Bl veb Links |

m ﬂw Multiplier

— Dutput Options

Width: I‘I 5} valid Range: 1.128

= Registerad " mMaon Registerad Bath

— Handshaking Signals

I Mo I RFD r RDY

FIGURE 37 -- CoreGen Block MULT GUI Page 3
Output Options: The output width selected is 16 bits, and the output is registered.

Handshake Signals: No handshake signals have been selected as the multiplier will be multiplying at a rate of

one every 100MHz clock cycle.

rtuslt iplier =]
El rarameters | Bl core Overview | BB contact | BB veb Links |
! 'cw Multiplier
— Pipaline
= Maximum Pipelining 7 Minimum Pipelining
— Register Oplions
I Asynchronous Clear I Synchronous Clear
I Clock Enable
CE Ovarrides
’71‘3‘ CE Overrildes SR CSClLR Overfides CE
— Inforrmation
O Output Latenoy 2
Q Output Latency 3
FIGURE 38 -- CoreGen Block MULT GUI Page 4
Pipeline: Maximum pipelining has been selected because of the speed at which the mutiplier is to operate.
Increasing the pipelining tends to increase the speed at a cost of increased output latency.
Register Options: No register options have been selected.
39 V1.1 1105

ADDER

This CoreGen block is used combine the squared Phase and Quadrature components from the output of the FFT to
produce a squared magnitude signal that is output on DAC-A.

[rdder subtraceer —

Bl Parameters | Bl core overview | Ell contact| [l web Links |

lagiC [FE

RENE ERE N

Adder Subtracter

Component Marme; |add ar

— Operation
= Add " Subtract

 AddiSubtract

— Port A lnput Options

Fort AW¥idth: I 16 Yalid Range: 1..256
= Sigred Unsigned T Pin

— PortB Input Options

Port B yWidth: |1B Valid Range: 1, 256
= Signed " Unsighed " Pin

™ ConstantValue: [0

Hex

e il Brram il e

FIGURE 39 -- CoreGen Block ADDER GUI Page 1

Operation: The operation required of this CoreGen block is an adder.

Port A Input Options: The port A input width is 16 bits to match the output of the MULT CoreGen block
output. Signed has been selected even though the output of the MULT block is a square and so should always be

positive.

Port B Input Options: The port B input width is 16 bits to match the output of the MULT CoreGen block
output. Signed has been selected even though the output of the MULT block is a square and so should always be

positive

x|

Bl Parameters | Bl core overview| B8l contact] Bl vweb Links |

Adder Subtracter

— Qutpul Options

" Mon Registersd
Register Options. .. |

= Registared " Bath

Latancy. |1 Valid Range. 1.16

Cutput Widih: 16 (=

— CarpdOverflow Options

[T CarmgBorrow Input
I CarmgBorrow Output
[Gt oner Ut

— Bypass {Load) Options —

T Bypass
M CE Owvernide for HypEss

— Bypass {(Load) Sense -

& Active High

T AClive Lo

— Layout

[~ Create RPM

raEaml e |

FIGURE 40 -- CoreGen Block ADDER GUI Page 1

40

Barma 3 af 3

V1.11105

Output Options: The options selected for the output of the adder block is registered with a latency of 1 and an
output data width of 16 bits.

41 V1.11105

	Introduction
	What is a FFT
	FFT Example
	Using the Example FFT
	Basic implementation
	C6000 Example Based Software
	HEART carrier like HEPC9
	HEPC8 carrier
	DSP example : What it does
	DSP example: setting it up
	DSP Example: using it

	�Host based Example software
	HEART carrier like HEPC9
	HEPC8 carrier
	Host example : What it does

	Implementation of the FFT
	FFT Example Specification
	Direct Digital Synthesiser(DDS):
	Window Multiplier:
	Kaiser-Bessel Window ROM:
	HSB interface registers:
	Heron Interface:
	D/A Outputs:
	Digital IO Connector:
	Files for Memory signal source:
	Direct Digital Synthesiser
	RAM 1024x32
	Mult16
	ROM 1024x16
	FFTMEM
	FFTMEMZ
	VFFT
	FIFO1023X32
	MULT
	ADDER

