
Applications Digital Radio

High Performance
Digital Down-Converters
for FPGAs

48

Virtex FPGAs surpass off-the-shelf ASSPs 
in design flexibility and system integration.



by Ray Andraka
President, Andraka Consulting Group, Inc
ray@andraka.com

Digital down-converters (DDC) are a key
component for digital radio. The DDC per-
forms the critical frequency translation need-
ed to recover the information from a digi-
tized modulated signal.

Thanks to the high-level of interest in digi-
tal radio, the market for DDC devices is
soaring. Typically, a designer will select an
off-the-shelf application-specific-standard-
part (ASSP) for this task. Although the costs
of these parts have fallen precipitously in the
face of market demand, ASSPs don’t offer
the design flexibility or integration attain-
able in an FPGA. 

ASSP vendors are stuck with the challenge of
creating a one-size-fits-all design, and end
users are stuck with fitting the device to their
needs–often paying for features or perform-
ance they don’t need or want. DDCs imple-
mented in FPGAs, however, can compete
with ASSPs by offering the additional bene-
fits of customizability and higher integration. 

A down-converter consists of a numerically
controlled digital oscillator, a mixer (shown
as a pair of multipliers), and a low pass fil-
ter, as shown in Figure 1. The band-limited
output from the filter allows us to reduce
the sample rate by decimating. The design
is fairly straightforward, although we must
to pay attention to the fidelity of the digital
sinusoid-sine and cosine waveforms pro-
duced by the numerically controlled oscilla-
tor. We must also consider the quality of the
filters, if we are to have acceptable noise
performance. (We must keep the design
from adding so much noise to the incoming
modulated signal that we can’t reliably
detect it. How much noise is acceptable
depends on the application.)

Some digital radio applications have fairly
high sample rates, which can make the
design more challenging. With careful
design, however, modern FPGAs can han-
dle data as fast as any commercially avail-
able analog-to-digital converter can supply
it. The advantage of using an FPGA is that
it allows us to customize the DDC to exact-

ly match our application. Furthermore,
with an FPGA implementation, we can put
the DDC and any post-processing in the
same chip. Post-processing is usually some
form of demodulator.

The Oscillator

In terms of system performance, the criti-
cal component in digital down-conversion
is the numerically controlled oscillator
(NCO). This component generates a sam-
pled digital sinusoid, which when mixed
with the incoming signal, shifts the sig-
nal’s spectrum. In other words, if we mul-
tiply (mix) a signal with a sine wave, we
get a frequency translation or “shift” of
the spectral image. The amount of transla-
tion is equal to the frequency of the “car-
rier” sine wave.

Insufficient precision or accuracy in the
sinusoid leads to degraded signal-to-noise
ratios and to spurious spectral artifacts,
either of which can swamp the incoming
signal. Attention to the quantization that
leads to these noise terms is essential for
the proper design of an NCO. In our
implementation model, our NCO con-
sists of a phase accumulator frequency
synthesizer and a phase angle-to-wave
shape conversion. The phase angle-to-
wave shape conversion circuit may be any
one of several possible designs.

Applications Digital Radio

49

Figure 1- Digital down-converter

Frequency Synthesizer

The frequency synthesizer is simply an accu-
mulator used to integrate a phase increment
value. If we interpret the MSB (most signifi-
cant bit) of the accumulator as having a
weight of � then the accumulator represents
the fractional portion of the accumulated
phase angle. Phase accumulator frequency
synthesis is discussed in detail in Xcell
Journal #31 in an article by Austin Lesea
(www.xilinx.com/xcell/xl31/xl31_32.pdf). 

Using a phase accumulator offers several
advantages over other methods:

• The synthesized frequency need not have
an integer relationship to the sample clock,
because modulo arithmetic preserves the
fractional part of the accumulated phase on
an overflow. This lets us set the local oscil-
lator to an arbitrary frequency without
changing the sample rate. 

• The phase increment value does not have
to be a constant. By dynamically changing
the increment value, we can easily modu-
late the phase or frequency of the generat-
ed signal. 

• Because 2N represents a full phase revolu-
tion, this generator interfaces nicely with
look-up tables for wave shape conversion.
Nothing in the phase accumulator design
will impair the noise performance of the
NCO; reducing word width only restricts
the frequencies that can be synthesized. 

mailto:ray@andraka.com
xcell/xl31/xl31_32.pdf


Noise is generated by an imperfect rendi-
tion of the sinusoid at the output of the
NCO. That noise can be phase errors
(angular distortions) or amplitude errors.
The phase accumulator generates only a
phase angle, so there is no amplitude
error. Errors caused by quantization of the
phase increment can cause a frequency
error, but not a changing phase error.

Waveform Synthesis

The phase accumulator produces a
“wrapped” phase angle that must be con-
verted to a sampled complex sinusoid.
The accuracy of the conversion directly
affects the noise performance of the
DDC. The noise introduced by the NCO
is caused by amplitude and phase errors,
which manifest themselves as reduced sig-
nal-to-noise-ratio (SNR) and degraded
spurious free dynamic range (SFDR)
respectively. Each additional bit of phase
improves the SFDR by about 6dB and
extra amplitude resolution adds to the
SNR by about 6dB.

The most obvious conversion circuit is a
simple lookup table of sine values by
phase angle, which is addressed directly by
the phase accumulator. The phase resolu-
tion determines the depth of the table,
while the amplitude precision determines

the width. To keep the size of the table
reasonable without sacrificing frequency
resolution, we must truncate the phase
accumulator output, using only the MSBs
at the cost of degrading the SFDR. The
size of a table grows exponentially with
phase resolution, so for even moderate
SFDR requirements, the table becomes
larger than what we would like to use in
an FPGA. 

Simple amplitude and phase symmetry
allows us to reduce the table size by a fac-
tor of 4 by reusing the first quadrant data
for the other quadrants. The same table is
used for the both sine and cosine values,
so if clock cycles per sample permit, the
same ROM can be read twice per sample.
In Virtex devices, you can use the dual-
port feature of the block RAM to simulta-
neously obtain both the sine and cosine
values from a shared ROM. Large ROMs
in FPGAs are expensive in terms of
resources used so, for phase resolutions of
more than 8 to 10 bits, other methods
should be used.

The large ROMs can be avoided by algo-
rithmically generating the sine and cosine
on the fly. While that sounds difficult,
there is a simple shift-add algorithm based
on vector rotation called CORDIC
(COordinate Rotation DIgital Computer)

that makes this task fairly easy in hard-
ware. (See www.andraka.com/cordic.htm
for details on CORDIC.) The algorithm
simultaneously generates a sine and cosine
value by rotating a unit vector from the
“I” axis to the desired phase angle using a
series of successively smaller elemental
rotations. The angles of those elemental
rotations are specifically selected for a
shift-and-add implementation. The “I”
(real or in-phase) and “Q” (imaginary or
quadrature) components of the rotated
vector are proportional to the cosine and
sine of the phase angle respectively. 

The Mixer

The function of the mixer is to multiply
the incoming signal by the locally generat-
ed sinusoid to shift the spectrum of the
signal. A straightforward implementation
uses two multipliers, one each for the sine
and the cosine. The multipliers produced
by the CORE Generator tool can easily be
used for this application.

If we use CORDIC for the wave shape
conversion, however, we can obtain the
mixer function for free. The combination
of the NCO and the mixer multiplies the
incoming signal by cos(�t)-jsin(�t) = e-j�t.
Because the NCO and mixer generate a
complex phasor, the net effect is to rotate

50

Applications Digital Radio

Figure 2-FPGA implementation of a digital down converter

http://www.andraka.com/cordic.htm


Applications Digital Radio

51

the incoming signal by a constantly
changing phase angle. Rather than rotat-
ing a unit vector to get I and Q scale val-
ues, we can use the CORDIC to directly
rotate the input signal. This eliminates the
two multipliers and avoids the potential
for additional quantization noise. 

A more subtle advantage to using
CORDIC is that it actually rotates the
vector rather than multiplying the compo-
nents separately. This means it does not
add noise to the signal other than the
spectral spurs caused by the phase quanti-
zation. The CORDIC hardware occupies
about the same area as a pair of multipli-
ers with the same input width in the
Virtex architecture. Thus, in effect, we
have a net area savings about equal to
what we would have used for the sine and
cosine wave shape conversion. The
CORDIC rotator also accepts a complex
input, so no additional hardware is need-
ed for applications requiring a complex
signal input. 

The Filter and Decimator

The mixed signal has to be filtered to iso-
late the portion of the spectrum containing
the signal of interest. The filter typically
has to be a narrow-band filter with a fairly
high rejection of unwanted spectrum. This
translates to an expensive filter if it is done
at the input sample rate. Instead, we can
use a multi-rate approach in which the sig-
nal is first decimated to a much lower sam-
ple rate using a less computationally inten-
sive filter. Then the signal is cleaned up
with a second more complex filter working
at the decimated sample rate.

High Ratio Decimator

A high-ratio decimation can be performed
very efficiently using a cascaded integrator-
comb (CIC) filter. The CIC filter is a
recursive implementation of the “boxcar”
or moving average filter. The spectral
response of such a filter is the sinc (sinx/x)
function. In a CIC filter, the number of
effective taps is an integer multiple of the
decimation ratio, so the filter nulls alias
onto the passband when the spectrum is
folded by decimation. If the passband is

sufficiently narrow, the rejection of the
aliased image is quite good, much better
than might be expected otherwise. We can
also cascade several sections to lower the
amplitude of the side lobes. The passband
of this filter does exhibit a pronounced roll-
off that usually must be corrected by the
clean-up filter. Keeping the passband of the
final filter narrow not only improves the
alias rejection, but also makes the roll-off
compensation easier. 

The advantages of using a CIC filter in this
implementation are: 

• It is a computationally easy filter to real-
ize.

• The same filter structure works for a very
wide range of decimation ratios by simply
changing the timing of the clock enables
on the comb section.

• The filter response referred to the output
sample rate is nearly independent of the
decimation ratio, so one clean-up filter
can be used for all decimation ratios. 

The gain of the CIC filter is a function of
the decimation ratio. Therefore, a barrel
shifter is required after the CIC filter in
applications where the decimation ratio has
to be changeable without changing the cir-
cuit. This is an issue in an ASSP DDC, as
it is a one-size-fits-all solution. Most of the
time in FPGAs, we can hardwire the shift,
or at worst, use a limited barrel shift,
because we can customize the DDC for our
application.

“Clean-Up” Filter

The output of the CIC filter has a sinc
shape, which is not suitable for most appli-
cations. A “clean-up” filter can be applied
at the CIC output to correct for the pass-
band droop, as well as to achieve the
desired cut-off frequency and filter shape.
This filter typically decimates by a factor of
2 or 4 to minimize the output sample rate
after the passband has been limited and
shaped. An application-specific filter
response, such as a raised cosine Nyquist
filter, can either be combined into the cor-
rection filter or be applied at a subsequent
filter stage. The clean-up filter is compact-
ly implemented using serial distributed

arithmetic (see www.andraka.com/dis-
tribu.htm for a tutorial on distributed
arithmetic). 

Identical filters must be applied to both
the I and Q channels. Even using the slow-
est speed grade Virtex FPGAs, the DDC
design described here can be clocked at
more than 130 MHz if the design is care-
fully executed and floor planned. This
high potential clock rate permits us to
time multiplex the I and Q data through
the same filters by interleaving the I and Q
samples on a clock-to-clock basis. Thus for
very little additional overhead, we can
handle both the I and Q data in the same
filter. We can also use the same technique
to handle several independently tuned
channels with a single instance of the
DDC design.

An advantage of using an FPGA for the
DDC is that we can customize the filter
chain to exactly meet our requirements.
With an off-the shelf chip, we would have
to either fit our requirements to the chips’
features or add additional post-processing
to modify the output to our needs. 

Conclusion

We’ve briefly discussed implementation of
a high performance DDC in an FPGA. If
we apply these techniques to a 16-bit
DDC with a 64 MS/sec input and a 100 dB
SFDR requirement, we come up with a
design that occupies about 550 Virtex
CLBs (configurable logic blocks). The
occupied area is heavily influenced by spe-
cific requirements of the application. The
cited design, shown in Figure 2, consists of
an NCO and mixer implemented as a
CORDIC rotator and a programmable
decimating filter. The filter is a 4th order
CIC filter followed by a 63-tap symmetric
Finite Impulse Response (FIR) filter.
Backing off on any of the requirements
can substantially reduce the area occupied
by the DDC. Because we are using an
FPGA, we have the luxury of picking the
features and performance to match our
application. If we were to use an ASSP
component, we would have to mold our
requirements and design around the capa-
bilities of the selected device. 

http://www.andraka.com/distribu.htm
http://www.andraka.com/distribu.htm

