HUNT ENGINEERING o
Chestnut Court, Burton Row, xemeff IS

Brent Knoll, Somerset, TA9 4BP, UK om
Tel: (+44) (0)1278 760188,
Fax: (+44) (0)1278 760199, Tk Pty Bk
Email: sales@hunteng.co.uk
www.hunteng.co.uk @S P
www.hunt-dsp.com TEXAS INSTRUMENTS

TN

Converting Hardware Interface Layer (HIL) v1.x Projectsto v2.0
v 1.0 R.Williams 11-12-02

For modules in the HERON-FPGA and HERON-1O families, HUNT ENGINEERING provide a
comprehensive VHDL support package. The VHDL package consists of a “top level”, with
corresponding user constraints file, VHDL sources and simulation files for the Hardware Interface Layer,
and User VHDL files as part of many examples.

The Hardware Interface Layer correctly interfaces with the Module hardware, while the top level (top.vhd)
defines all inputs and outputs from the FPGA on your module.

With Version 2.0 of the Hardware Interface Layer, HUNT ENGINEERING introduced two new
interface functions that provide full access to multiple HERON input FIFOs and multiple HERON
output FIFOs.

This document discusses the required steps for converting an ISE project that uses Version 1 of the
Hardware Interface Layer to a project that uses Version 2.0. This conversion is suitable for those users
that wish to make use of the new multiple FIFO access functionality provided in the new HIL version.

For users of the old version, v1 Hardware Interface Layer, it is not completely necessary to convert your
projects to use the new version. Where you have an existing project that works correctly with the single
FIFO interface components there is no need to make this conversion.

History
Rev 1.0 First written

AN /

HUNT ENGINEERING isatrading style of HUNT ENGINEERING (U.K.) Ltd, Co Reg No 3333633
Directors P.Warnes& N.J.Warnes. Reg'd office 34 & 38 North St, Bridgwater, Somerset TA6 3YD. VAT Reg'd No GB 515 8449 31

Converting an Existing v1.x HIL Project

This tutorial assumes that you are converting a v1.x HIL project to use the new v2.0 Hardware
Interface Layer. It is assumed that both the old project that you are converting, and the new project you
are converting to will be used under the same version of ISE.

Although there are several different versions of the Xilinx ISE development tools available, it is not the
purpose of this document to discuss modifying your project to work with a different version of ISE.

If you intend to change the version of ISE with which your project works, please do this before starting
the vlx HIL to v2.0 HIL conversion. There are several documents provided on the HUNT
ENGINEERING CD that describe the process of moving between ISE versions, should you wish to
do this.

Converting the Examplel Project

For this tutorial we will illustrate the steps in converting an Examplel project for the HERON-
FPGAZ3. For all other board types and examples these key steps are the same.

1. Create a new working directory. Copy your current /Common and /Examplel directories
into this new directory. By creating a new directory structure the conversion process will not
affect any other projects that currently use the vl.x /Common directory installed on your
machine.

2. Delete all of the files in the new /Common directory.

3. Copy the entire contents of the HERON-FPGA3 /Common directory from your HUNT
ENGINEERING CD into the directory emptied in the previous step. Please note, this must be
done with a version of the HUNT ENGINEERING CD that includes the new HIL v2.0
support.

4. Open the ISE Project Navigator. Select ‘File = Open Project’. To load the Examplel project,
go to the directory dir\examplel\ISE (where dir is the new working directory you created in
step 1). Open the Examplel project file.

5. When the project is first opened with the new /Common directory ISE will report four missing
files, as follows:

x

& Source file '\ dcommonHE_RD_1F.vhd' does nok exist,

For each window click ‘ok’ to dismiss the window.
x|

& Source file '\ dcommontHE _WR_1F.vhd' does not exist,

[T x

& Source file ',). A\ CommontSIM_RD_1F.vhd' does nok exist,

x

& Source File ', AComrmon! SIM_WR_1F vhd' does nok exist,

6. When the project has finished opening use Windows Explorer or an equivalent utility to delete
all files with the extension ‘. j hd’ in the /Examplel/ISE directory.

7. The next step is to add the new HIL components into the project. To do this click on the menu
item ‘Project-> Add Source’. There are two files that must be added to the project... one for
the six FIFO read interface, and one for the six FIFO write interface.

File Edit View | Project Source Process ‘Window Help

JD Ijs- n ‘ Mews Source...

Add Source, .. Insert

Add Copy of Source.,. Shift+Insert

Sources in Proje
...... E HEROM-

E-£1 2100

= V) Archive, ..

----- 4] Take Snapshat. ..
----- [Make Snapshot Current

Cleanup Project Files
Toggle Paths

_____ E Apply Project Properties, ..

----- @ ez_wi_hf [5 ScommontW2ES_RWwWC vt
----- @ ez_wi_f [scommon'W2ES_RWC vh

----- he_rd_1f -
4 | »

N BT hodule View l 3 Shapzhat Wigt J T@ Library Wiew I

Please note for each file added to the project, you will be asked what the source type of that file is.
In each case for the FIFO interface components, ensure that you select VHDL Module for the

source type.
x

2 RD_EBF whd iz which zounce type?
The suffit iz ambiguous as to bype.

WHOL kModule
YHOL Package -
WHOL Test Bench Cancel

_Cercd |
Help |

The files that are to be added to the project are found in the new /Common directory. If the
Examplel project opened was for a Virtex-11 module, then for a Six FIFO Read Interface you will
need to add the file 'V2_RD_6F.VHD’, or for a Spartan-11 project, you should instead add the file
‘52_RD_6F.VHD'. For the Six FIFO Write Interface there is simply one file HE_WR_6F.

Add Existing Sources el bt

Lok jr: Ia Commar j - £ Eo-

""" Fpgads_tpl.uck SIM_MSi.whd WZES P vhd
Fpgadv_kpl.ucf SIM_RD_6F.vhd

WHIHE_RWCLK.vhd [wn]SIM_WR_6F.vhd

[h]HE_LUSER vhd [TOP vhd

WHIHE_WR_6F.vhd [u]USER_AP_TPL vhd

wa|52_RD_6F.vhd Wz _RD_GF,vhd

File name: [v2_RD_BF.vhd Open |
Filez of tpe: IS:::ur-:es [".txt;“.vhd;".:-cu:u:u;“.sch;”.thw;“.bmm;’j Cancel |
i

Six FIFO Read Interface for Virtex-11 projects.

Add Existing Sources] 2| =]

Laok jr: Iﬁ Comman | @ =5 B

Fpga3s_tpl.ucf | 3IM_M3G, vhd UZES_RWC.vhd
=] Fpgasv_tplucf [wi]SIM_RD_6F vhd

wH|HE_RWCLE vhd wH|SIM_MWR_&F . vhd

wi|HE_USER, vhd yH| TOP whd

walHE_WR_6F vhd [wn]USER_AP_TPL.vhd

pimis2 _RD_6F.vhd wi|V2_RD_BF.vhd

File name: |52_RD_EF.vhd Open |
Files of type: I Sources [7. bt vhd;* soo” sch;®. tl:-w;".l:-mm;’j Cancel |
A

Six FIFO Read Interface for Spartan-11 projects.

Add Existing Sources i el

Look in: Ia Common j & £ Eo-

Fpoazs_kpl.ucf yi| SIM_M5G, vhd 'u'ZES_R'u'u'C.vhd
=] Fpgazv_tpl.uc wi]SIM_RD_6F. vhd

wa|HE_RWwiCLK. vhd [wn]STM_WR_&F.vhd

wa|HE_USER. vhd Wi TOP vhd

R [LulUSER_aP_TPL.vhd

52_RD_6F.vhd wH|¥Z_RD_6F.vhd

File name: |HE_\w/R_EF.vhd Open |
Files of type: I Sources (% vhd:® woo® ach:® thw® hmm:’j Cancel |
P

Six FIFO Write Interface component.

8. Once you have added the read-interface file and the write-interface file, open the USER_AP
template file in ISE. This file is named ‘user_ap_tpl.vhd’ and is located in the new /Common
directory. Navigate to this file using File->Open and then browsing to the correct directory.
Also open the USER_AP module for the example by double-clicking on the correct source
module in the ‘Sources in Project’ window.

Copy the entire ‘ENTITY’ declaration at the top of the user-ap template, and paste it over the
existing ENTITY declaration in the ‘user-ap’ file of the example.

fpoga‘fpga3vl'Examplel’ISE\Exl_Fpga3v.npl - [User_Apl.¥hd]

sz Window Help

IHE(REE|2R | 2B | E alE:

ﬂ;l_?_cl

=

|

F

i
22| x|
_]

library IEEE:
uze IEEE.std logic_lled.ALL:
use IEEE.mumeric_std.all:
use WORE.CONFIG.all:

Enticy USER_AF is

port |
BRESET tiine gnd.loeyic: -- asynchrono
CONFIG toin sed Legic; -- Aysten wid
-- CLOCE IO
0aco :odin atd Logdc: == Figl D5ED
0acl toin atd Llogic: -- ®tal 03C1
oacz oine atd, Legie; -- ®tal 03C:Z
05C3 toin Snd doerie: -- Xrtal 03C3
CLEINO i mkd logiie:; -- User clock

9. Now that the new entity declaration is in place, close the USER_AP_TPL file. By changing the
entity declaration we have changed the signal names for the HERON FIFO Read Interface and
the HERON FIFO Write Interface. The Version 1 Hardware Interface Layer declarations are:

-- FIFOIN/ HE RD _1F interface

I NFI FO D : in std_logic_vector(31 dowmnto 0);
I NFI FO EMPTY : in std_logic;

I NFI FO_SEL : out std_logic_vector(5 downto 0);

I NFI FO READ : out std_l ogic;

-- FIFOQUT / HE WR 1F interface

QUTFI FO_D : out std_logic_vector(31 dowmnto 0);
QUTFI FO FULL : in std_logic;

OUTFI FO_SEL : out std_logic_vector(5 downto 0);

OQUTFI FO WRI TE : out std_l ogic;

These declarations are now replaced in Version 2 of the Hardware Interface Layer as follows:

-- FIFOIN/ HE RD 6F interface
I NFI FO_ READ REQ : out std_logic_vector(5 downto 0);

INFIFO DVALID : in std_logic_vector(5 downto 0);
INFIFO SINGLE : in std_logic_vector(5 downto 0);
I NFI FO_BURST :in std_logic_vector(5 downto 0);
I NFI FOO_D :in std_logic_vector(31 dowto 0);

I NFI FOL_D :in std_logic_vector(31 dowto 0);

I NFI FO2_D :in std_logic_vector(31 dowto 0);
I NFI FO3_D :in std_logic_vector(31 dowto 0);
I NFI FO4_D :in std_logic_vector(31 dowto 0);
I NFI FO5_D :in std_logic_vector(31 dowto 0);
-- FIFO QUT / HE WR 6F interface

QUTFI FO READY : in std_logic_vector(5 downto 0);
QUTFIFOWRITE : out std_logic_vector(5 dowto 0);
QUTFI FO_D : out std_logic_vector(31 downto 0);

With this change to the signal names we must change the signal names that appear in the
architecture body.

The HIL V1 Examplel project transfers data from one single HERON input FIFO to a single
HERON output FIFO. For the new project, we are using a Hardware Interface Layer that allows
us to use all six input FIFOs and all six output FIFOs concurrently. For the purpose of this
document we will choose FIFO 0 to use in place of the single FIFO connection made in the
example that we started with. If you wish to find out how the Six FIFO Write and Six FIFO Read
interfaces can be used to transfer data to and from many FIFOs at the same time, please refer to
the examples provided on the HUNT ENGINEERING CD that demonstrate multiple FIFO
access.

So to change the example to work with the new V2 Hardware Interface Layer, the following
changes should be made below the begin statement in the architecture of the USER_AP module.
Please note, this only requires changing signal names in your design, not the names of component
pins.

Replace signal | NFI FO_Dwith | NFI FOCO_D

Replace signal | NFI FO_EMPTY with | NFI FO_BURST(0)
Replace signal | NFI FO_READ with | NFI FO_READ REQ 0)
Remove signal | NFI FO_SEL

Remove signal OQUTFI FO_SEL

Replace signal OQUTFI FO_FULL with QUTFI FO_READY(0)
Replace signal QUTFI FO_WRI TE with QUTFI FO_WRI TE(0)
(Note: OQUTFI FO _Dstays as OUTFI FO D)

If you have made these changes correctly to the original project, you should then have code that is
similar to the following VHDL code for the FIFO connections:

-- FIFGs

SRC FCLK RD <= '0'; -- clock source for READ FI FO

SRC FCLK W\R <= '0'; -- clock source for WRITE FI FO

SRC FCLK G <= MCLK; -- global clock source for both FIFGCs

OUTFI FO D <= | NFI FO0_D;
i TRANS : TRANSFER
port map (
RST => RESET,

10.

11.

CLK => FCLK_G,
| NFI FO_ EMPTY => | NFI FO_BURST(0),
OUTFI FO FULL => OUTFI FO_READY(0),
I NFI FO READ => | NFI FO_READ REQ0),
OUTFI FO WRI TE => OUTFI FO WRI TE(0)):

At this point we have a project that should synthesize. Check this by highlighting the file
‘top.vhd’ in the Sources view and double-clicking on Synthesize in the Process view. The design
should synthesize without error. If there are any errors reported when you synthesize, re-check
all of the previous steps.

At this point we have a project that is correct as far as syntax is concerned, but we need to
make one more important set of changes before the project is safe and functionally correct.

With the introduction of the new Six FIFO Read and Write interface components it is now
possible to access multiple FIFOs at the same time both for reading and writing. Along with the
increase in available FIFOs there has been a change to the way the interface signals behave.

For example, in the case of the V1 HERON FIFO Read Interface, the I NFI FO_READ signal
would be used to read a word of data when set high, as long as the FIFO was not empty
(I NFI FO_EMPTY set low). For V2 of the Hardware Interface Layer, we now have six read-
request signals that can be set to ‘request’ data, when available, from each input FIFO. This
new signal does not indicate the actual transfer of data.

When data is available to be transferred from one of the HERON Input FIFOs, the
corresponding data valid signal will becoming asserted (I NFI FO_DVALI D(x) signal) when data
is valid.

Considering this the following changes are necessary for our new example project. The
following code will transfer data, when available from HERON input FIFO 0 to HERON
output FIFO 0. This code must be written in place of the existing code that uses the module
‘transfer’. That is, the instanciation of TRANSFER must be removed from the source.

- Transfer data fromFIFOO in to FIFO O out
OUTFI FO D <= I NFI FO0_D;

- Request data when the output interface is ready
I NFI FO_ READ REQ(0) <= QOUTFI FO_READY(0);
- Tie unused requests inactive (low)
I NFI FO_ READ REQ(5 downto 1) <= (others=>"0");
- Transfer data when it becomes avail abl e
OUTFI FO WRI TE(0) <= | NFI FO_DVALI D(0);
- Tie unused wite signals inactive (low)
OQUTFI FO WRI TE(5 downto 1) <= (others=>"0");

Conclusion

When converting a V1 HIL project to V2, there a few key steps to follow. The first step is to replace

the /Common directory for the project you are converting.
Then the new modules for the Read Interface and Write Interface must be added to the project.

Following this, change the User_Ap entity declaration to match that in the User-Ap template file in the
new /Common directory.

With the new entity in place, change the use of all FIFO control and data signals to match those used
by the new Hardware Interface Layer. Remember, this involves both changing the signal names that
appear in the architecture body and changing how those signals are used.

If you want to find out more information about using the FIFO interfaces in the new Hardware
Interface Layer, you can read the document ‘Accessing Multiple FIFOs in your FPGA Design’, which
can be found on the HUNT ENGINEERING CD. There are also several examples provided that
demonstrate using these FIFOs for reading and writing multiple FIFOs concurrently.

The new Hardware Interface Layer, version 2.0 is only different to that of version 1 by the use of new
HERON Read FIFO and HERON Write FIFO interfaces. All other interfaces, such as the HSB
message interface and the A/D and D/A interfaces available for HERON-10 modules have remained
the same between versions.

Please note, in working through this tutorial you will have taken an old (v1.0 HIL compatible) project
and modified it to use the new interfaces. This was demonstrated by converting Examplel. However,
the new project that is created will not match the Examplel that is provided on the HUNT
ENGINEERING CD. If you wish to start from Examplel for the development of a new project, it is
recommended that you start from the appropriate Examplel provided on the CD.

	Converting an Existing v1.x HIL Project
	Conclusion

