
Copyright 2000 / All rights reserved DSP Engineering / Spring 2000

THE HIGH-END
ALTERNATIVE FOR DSP APPLICATIONS

By Dr. Chris Dick

Engineers have been using field programmable gate arrays
(FPGAs) to build high performance DSP systems for several
years. FPGAs are uniquely suited to repetitive DSP tasks, such
as multiply and accumulate (MAC) operations because they
can perform these repetitive operations in parallel. As a result
FPGAs can vastly outperform DSP chips, which perform
operations in an essentially sequential fashion. In this article
Chris discusses how FPGA hardware can be used to augment
the processing power of traditional instruction-driven DSP
chips, while maintaining the flexibility and the upgrading ability
of software-implemented DSP algorithms.

FPGA technology is continuing to advance rapidly, in both per-
formance and density. Today’s leading-edge FPGA chips (which
offer two-million system gates of logic density) can perform 27
billion MACs/sec, compared with 1.6 billion MACs/sec for the
fastest DSP chip currently on the market. By the year 2002 engi-
neers will have access to FPGAs with 10 million gates that can
process 500 billion MACS/sec.

However, high-performance, FPGA-based designs have come at a
cost. DSP programmers (who live in a software world) are being
forced to leap into the world of electrical engineering (and learn a
new vocabulary of flip-flops, gates and VHDL code) in order to
use FPGA technology.

Fortunately, the job has now gotten much easier because of the
availability of:

■ DSP algorithms, in the form of intellectual property (IP) —
also known as cores

■ tools for incorporating this intellectual property into FPGA-
based designs

Intellectual property
A growing number of intellectual property modules that perform
DSP functions are now being made available for FPGAs. These
predefined modules (whose parameters can be tuned as neces-
sary) provide a variety of standard DSP algorithms, such as...

■ filters ■ transforms
■ correlators ■ memories
■ sine/cosine building blocks ■ math functions

...and can be used to support a wide variety of applications,
such as:

■ communications ■ multimedia
■ imaging ■ video applications

These cores make it much easier for DSP system designers to use
FPGA technology, and to reduce their time-to-market.

Tools for incorporating intellectual property
Tools are also making it easier to incorporate this intellectual
property into FPGA-based systems. In addition, traditional sys-
tem-level modeling tools (already familiar to DSP designers) are
soon expected to support FPGAs.

FPGAs can be used to improve system
performance
FPGAs also allow system designers to greatly improve the per-
formance of DSP-chip-based systems. For example, FPGA finite
impulse response (FIR) filter cores can process hundreds of taps
at Msample/sec rates. When used in wireless base stations, test
equipment, and image processing systems FPGAs can improve
performance levels by at least an order of magnitude. That’s
because FPGAs permit the design of pipelined data flow archi-
tectures, where the data flows from one processing unit to the next
inside the FPGA, with minimal signal loading and with no over-
head for instruction-fetching or data fetching.

FPGAs can be used to lower system power
dissipation
The use of FPGAs (instead of clusters of DSP chips) greatly
reduces power dissipation, and provides much higher levels of inte-
gration — clear advantages for designers of portable equipment.

Much of the power dissipation of any system is expended in dri-
ving the signal traces on printed circuit boards that are used to
interconnect the components. For example, systems based on
DSP chip technology must drive heavily loaded buses that are
used to connect the DSP chips to the memory chips. The extra
clock cycles needed to fetch the instructions and the operands
from off-chip memory (over these buses) further adds to the total
power requirements needed to execute an algorithm.

Because the power consumption of a chip is directly proportional
to its clock frequency, the ability of an FPGA to split an incoming
data stream and process it as several parallel data streams (at cor-
respondingly lower clock rates) also becomes an important part
of the total power equation.

FPGAs can be used to design
reconfigurable systems
The rapidly evolving telecom industry has been quick to capital-
ize on the flexibility and the high performance that FPGA tech-
nology provides. Nearly 50% of all FPGA production currently
finds its way into telecom and networking equipment of one sort
or another, including:

■ wireless base stations ■ switches
■ routers ■ modems

FPGAs provide the flexibility needed to track evolving standards
(such as WCDMA) and to deal with fluid standards (such as
ADSL — asynchronous digital subscriber line).

Take a look at the circuit boards within any wireless base station
and you will almost certainly find a programmable device.
Programmable logic was first used just to replace glue logic, but
it has now become the dominant hardware technology in many
wireless base stations.

The digital components found in a base station include:

■ DSP chips ■ RISC microprocessors
■ microcontrollers ■ RAMs
■ FPGAs
■ communication chip sets (such PCI and Ethernet interfaces

and HDLC controllers)

FPGAs:

Reprinted from DSP Engineering / Spring 2000 Copyright 2000 / All rights reserved

All of these components (except
for the communications chip
sets) can be completely repro-

grammed in the field. FPGAs
allow the design of base stations in

which the vast majority of the system
can be reconfigured remotely after deploy-

ment — not just the software, but the hardware as well!

This allows a system’s functionality to be incrementally upgraded
throughout its life cycle. Changes might be required for several
reasons, including:

■ fixing bugs ■ adding new functionality to the system
■ adapting the system to evolving standards

It is the last point that is key to keeping up with the evolution of
wireless systems.

Third-generation digital wireless systems
Second-generation digital wireless systems (such as IS-95, which
replaced the old analog networks) were designed primarily for
voice traffic. However, the growth in the Internet has now created
a demand for wireless networks with enhanced data handling
capability.

The third generation of digital wireless technology (referred to as
G3) will provide 2-Mbit/sec throughput. With the recent agreement
between Ericsson and Qualcom, it now appears likely that the ITU
will adopt a CDMA-based standard for G3 systems. The adoption
of such a CDMA-based standard would allow wireless network
operators to provide a wide range of service levels. However, it
would complicate the design of base stations and terminals, because
they would need to support multiple modes of operation.

The flexibility needed to handle these various modes of operation
can obviously be provided by reprogramming the DSP chips and
the general-purpose microprocessors in the base stations.
However, these components might not be able to provide the
required level of performance. The only alternative would be to
supplement these chips with customized hardware to perform the
most compute-intensive signal processing tasks. FPGAs can pro-
vide this hardware, while offering the same degree of reconfig-
urability as software.

As an FPGA supplier, Xilinx is currently working with several base
station manufacturers to help develop the third-generation of wire-
less communications systems. With the Ericsson-Qualcom agree-
ment, it is almost certain that the next generation wireless standard
will allow three different modes of operation. If wireless equipment
manufacturers wait for all three of these modes to be fully stan-
dardized, network operators will find it impossible to deploy new
network hardware in time to meet the forecasted demand.

To prepare for this demand, engineers are being forced to design
tomorrow’s base stations while the specifications are still evolv-
ing. FPGAs have become a key technology because they allow
engineers to begin board designs early, and then amend the func-
tionality at a later stage of the project — without having to relay-
out and remanufacture the printed circuit boards.

Normally in a system as complex as a base station, the FPGAs are
configured under the supervision of a microprocessor or a DSP
chip. The microprocessor (or DSP) receives the FPGA configura-
tion data through:

■ a local I/O port
■ a control channel within the wireless network

This data is then held in the system RAM, and eventually down-
loaded:

■ to each FPGA in turn, through a serial chain
■ to all FPGAs at the same time, in parallel
■ to the various FPGAs, using some combination of these two

methods

Note: Most FPGAs cannot be partially reprogrammed. Unless the
system is implemented with an FPGA that can be partially repro-
grammed (such as the Xilinx Virtex FPGA) care must be taken to
ensure that all traffic is rerouted (and the FPGA is taken off line)
before any reconfiguration of the FPGA begins.

As the capacities of FPGAs increase, more and more of the sys-
tem functionality will be embodied in each FPGA device. That
will eventually make partial reconfiguration mandatory.
Reconfiguration of selected functions within each FPGA will also
allow the FPGA silicon to be dynamically adapted to the con-
stantly changing demands of message traffic. The resulting effi-
ciencies will allow reductions in:

■ physical system size
■ system power consumption
■ the cost of the FPGAs

FPGA architectures
There is currently a wide range of FPGA products being offered
by many semiconductor vendors, including:

■ Xilinx ■ Altera ■ Atmel ■ AT&T

The architectural approaches used in these FPGAs are as diverse
as their manufacturers. However, some generalizations can be
made. Most FPGAs are organized as:

■ an array of logic elements
■ programmable interconnections between the logic elements,

the I/O pins, and other resources such as on-chip memory

The logic elements
Each logic element typically consists of:

■ 1 or more n-input RAM-based look-up tables, where n is
between 3 and 6

■ 1 to several flip-flops

Configuring the FPGA
The configuration and interconnection of the logic elements, the
I/O pins and the other resources inside the FPGA is accomplished
by downloading a bit stream into a static RAM configuration
memory inside the FPGA. This bit stream defines:

■ the functionality of each of the logic elements
■ the internal routing between the logic elements

Different applications can be supported with the same FPGA by
simply reconfiguring the FPGA with appropriate bit streams.

The Xilinx Virtex series
To take a specific example, consider the Xilinx Virtex series of
FPGAs [2]. The logic elements in this FPGA (called slices) con-
sist of:

■ two 4-input look-up tables (LUTs)
■ two flip-flops
■ several multiplexers
■ some additional silicon support

FPGAs:

Copyright 2000 / All rights reserved DSP Engineering / Spring 2000

Note: The additional silicon support allows for the efficient imple-
mentation of carry-chains which handle the carry bits when build-
ing high-speed adders and subtracters. There is also silicon sup-
port that permits the construction of compact, high performance
shift registers that can be used to implement very impressive fil-
ters, and various types of transforms.

Two of these slices form a configurable logic block, as shown in
Figure 1. The logic block is the basic unit that is used to build the
logic matrix.

The current generation Xilinx Virtex FPGA family of devices
offers 768 to 32,448 logic slices. In addition, they have from 8 to
280 true dual-ported block memories. Typical clock frequencies
for these devices are in the 100 to 200 MHz range.

In addition to the dual-ported RAM blocks, Xilinx XC4000 and
Virtex [2] devices include look-up tables (LUTs) in each logic ele-
ment, which can be used as memory — either as ROM or as
RAM. By distributing the stored data throughout the FPGA (in
the LUTs) effective memory bandwidths in the range of many
tens of Gbytes/sec can be provided.

Designing a complex multiplier
Complex-valued (real + imaginary) arithmetic is used in a wide
range of DSP applications. In fact a widely-used benchmark for a
DSP chip is its capacity to perform complex arithmetic — and in
particular its capacity for performing complex multiplications.
For example, DSP Architectures’ DSP-24 [3] can perform a
24x24 complex multiply in 10 nsecs, when operating at 100 MHz.

Note: A 24x24 complex product is generated by multiplying a 48-
bit complex number (a 24-bit real value, plus a 24-bit imaginary
value) by another 48-bit complex number (a 24-bit real value, plus
a 24-bit imaginary value).

Implementing a complex multiplier with an FPGA
One method for computing a complex multiplication involves:

■ 4 real multiplies
■ 1 addition
■ 1 subtraction

A 24x24 pipelined real multiplier requires 348 logic slices. A 48-
bit adder requires 24 slices, and a 48-bit subtracter requires 24
slices. Thus, a 24x24 complex multiplier can be constructed with:
(4 x 348) + 24 + 24 = 1440 slices.

This is only 12% of the logic provided by a Virtex XCV1000
FPGA.

The 4 multipliers, the adder and the subtracter will each operate at
a clock frequency in excess of 100 MHz. This allows a complex

product to be computed in 10 nsec, which is already competitive
with the DSP-24 benchmark. Using a faster grade FPGA permits
even higher computational rates.

To achieve even higher performance, several of these complex
multipliers could be implemented in a single Virtex chip, and the
incoming data stream could be split into multiple data streams,
with each stream being directed to a different multiplier.

For example, by paralleling 5 complex multipliers, 5 complex
products could be computed every 10 nsecs — an effective rate of
one product every 2 nsecs. This design would consume about 59%
of a Virtex XCV1000 FPGA.

Providing adequate I/O bandwidth
It is all very well to design a parallel data path like the one above.
However, in order to be useful, all five of these multipliers must be
kept busy 100% of the time. In order to do that, you must supply
each multiplier with a new pair of complex input operands on
each clock tick.

To provide the I/O bandwidth needed to feed several multipliers
simultaneously, the XVC1000 has 512 user-defined I/O pins,
which are configurable, and support a wide range of signaling
standards.

An alternative complex multiplier design
An alternative method for implementing a complex multiplier
would be to use a single time-shared 24x24 real multiplier. This
time-shared approach would require about 450 slices (or 3.7 %) of
an XCV1000 — or 15% of an XCV300.

Since each complex multiplication requires 4 real multiplication
operations, the computation of each complex product would
require 4 clock ticks. With a 100-MHz system clock, a new com-
plex product would be computed every 40 nsec. This is still 2.5
times as fast as the DSP-24 benchmark figure.

The ability to architect a custom pipelined data processing path
with any degree of parallelism allows FPGA hardware to satisfy
the performance requirements of virtually any application.

Using FPGAs to construct digital filters
The Finite Impulse Response (FIR) filter (shown in Figure 2) is
one of the basic building blocks common to nearly all DSP sys-
tems. The output sample stream is generated by convolving the
input sample stream with N filter coefficients. (This operation is
referred to as an inner-product or vector dot-product.) N multipli-
cations and N-1 additions are required to compute each value in
the output stream.

The filter coefficients define the frequency response of the filter.
In applications that require a large number of filter coefficients, or
high sample rates (or a combination of both) the arithmetic work-
load can be quite substantial.

DSP chips are often used to implement real-time filters. A higher
performance (but less flexible) alternative is an ASIC design.
A more recent approach is to exploit the parallelism that FPGAs
can provide.

Carry
&

Control

Slice 1

Cin

Cout

Carry
&

Control

LUT

LUT

Reset control

Reset control

SP
D Q
EC

RC

SP
D Q
EC

RC

Carry
&

Control

Slice 2

Cin

Cout

Carry
&

Control

LUT

LUT

Reset control

Reset control

SP
D Q
EC

RC

SP
D Q
EC

RC

EC = clock enable
SP = set/preset

A configurable logic block

Figure 1

a0

Z-1 Z-1 Z-1 Z-1 Z-1 Z-1

a1 a2 a3 a4

xn

yn

aN-1

Figure 2

Reprinted from DSP Engineering / Spring 2000 Copyright 2000 / All rights reserved

Implementing FIR filters
using FPGAs
There are many ways to im-

plement FIR filters with an
FPGA. The most obvious approach

(although less than optimal) is to use
an architecture similar to the one typically

found in an ASIC or a DSP, which employs a single
time-shared multiply-accumulate (MAC) unit. Since many signal
processing engineers are familiar with ASIC and DSP implemen-
tations, we will use this as the starting-point for discussing FPGA
implementations of FIR filters.

The MAC-based approach
An inner-product computation can be accelerated by using multi-
ple MAC units. In fact, this is a common approach, used by the
more recent digital signal processors — both DSP chips and
ASICs. This same method can be used in an FPGA implementa-
tion. However, an FPGA designer has virtually complete control
of the silicon, and can decide how much of that silicon is to be
allocated to the inner-product engine.

Implementing an FIR filter with a traditional DSP chip
architecture
To provide a reference for evaluating the performance of a MAC-
based FPGA-implemented FIR filter, let’s first consider the MAC-
based DSP-24 digital signal processor. Using...

■ a clock frequency of 100 MHz
■ 24-bit data
■ 24-bit coefficients

...the DSP-24 can compute a real filter tap in 5 nsecs, and a
complex tap in 10 nsecs.

Implementing a MAC-based FIR filter with an FPGA
At the heart of most MAC-based engines is a real multiplier. A
24x24-bit multiplier is needed to process 24-bit input samples and
coefficients. Using Xilinx Virtex FPGA technology this multiplier
can be implemented using 348 logic slices. This is 11% of a low-
density device, such as the XCV300 [2].

To construct a complete MAC unit, an accumulator must be pro-
vided on the output of the multiplier. As products from the multi-
plier are accumulated, the number of bits in the result might
exceed 48 bits. In fact, the maximum number of bits required in
the accumulator depends upon the number of products that will
be accumulated — an application specific number.

When implementing a MAC with an FPGA, the architect is free to
choose the precision of the accumulator. For this example we will
specify a 56-bit-wide accumulator. The accumulator requires 28
logic slices.

Excluding the small amount of control logic needed for address
generation, and for scheduling of the arithmetic unit, this MAC
engine can be implemented with about 348+28 = 376 logic
slices.

In addition to this MAC engine, a complete FIR filter requires
storage for:

■ the filter coefficients (N values)
■ the input sample history buffer (N values)

There are several memory resources that can be used to provide
this storage in a Virtex FPGA, including block RAM or distrib-
uted RAM (LUTs).

For large filters (with many taps) the block RAM is needed to
provide enough storage for both the input samples and for the fil-
ter coefficients. For smaller filters (with fewer taps) the input sam-
ples (and/or the coefficients) can be stored in distributed RAM,
which is provided by the 16x1 LUTs that are part of each logic
element in the fabric.

For example, a 16-tap filter using 24-bit input samples and 24-bit
coefficients, requires a total of 24 slices to provide both the filter
memory and the coefficient storage. A clock frequency of 100
MHz provides a multiply-accumulate rate of 10 nsecs/tap, or 100
MMACs of performance.

The configurable nature of FPGAs would permit a designer to
exploit the high degree of potential parallelism in many DSP
algorithms, to achieve even higher levels of performance. In this
case, two MACs could be paralleled in a single filter to provide a
200-MMAC throughput.

This dual-MAC design requires about 3% of an XCV1000 FPGA,
and computes the equivalent of a MAC every 5 nsecs. Additional
MAC units could be employed to further reduce the effective
MAC cycle time.

Parallel execution in DSP chips
Many current DSP chips have multiple execution units for per-
forming arithmetic operations. These execution units often
include several MAC units, for accelerating filter computations.
Programmers can use parallelism (up to a point) to increase the
performance of MAC operations. However, the degree of concur-
rent execution is limited by the number of MACs in the DSP chip,
often preventing the programmer from fully exploiting all of the
potential concurrency in the algorithm.

In many DSP chips the effective number of MAC units can be
increased, at the cost of lower precision in the MAC calculations.
For example, one current DSP chip can compute two 80-bit real
MACs (32-bit data and coefficients) or eight 40-bit MACs (16-bit
data and coefficients) per clock cycle. The latter figure corre-
sponds to a performance of 2 GMACs (GMACs) at a clock
frequency of 250 MHz.

Parallel execution in FPGAs
In contrast, FPGA hardware allows the designer to allocate silicon
resources to fully exploit the concurrency in an algorithm. For
example, if an algorithm performs 14 multiplies, and then sums
all of the products, an FPGA could be configured to perform all of
the 14 multiplications in parallel, using 14 traditional MAC-style
inner product engines.

Suppose each of these engines supports 16-bit data, 16-bit coeffi-
cients, and a 40-bit accumulator:

■ Each of the 16x16 multipliers would require 168 logic slices.
■ Each of the 40-bit accumulators would require about 20 slices.

The simultaneous outputs of these 14 MAC units could then be
combined, using an adder-tree.

The 14-MAC units and the adder tree could be implemented with
about 2,892 slices. This represents 61% of an XCV400 FPGA [2].
When driving these units with a 150 MHz clock, the 14 MAC
units would provide 2 GMACs of performance.

FIR filters: An alternative design approach, using
distributed arithmetic
The performance of the highly-parallel MAC architecture
described above is indeed impressive. However, we should ask

FPGAs:

Reprinted from DSP Engineering / Spring 2000 Copyright 2000 / All rights reserved

ourselves if this DSP-chip-
inspired architecture is the
optimal architecture for solving

this problem with an FPGA.
In many cases the answer to this

question is “no”.

A wide variety of very creative optimizations of DSP
computational hardware have been reported in the open literature
over the last few decades. However, these approaches can be very
application specific, and require customized hardware.

Unfortunately, general-purpose DSP chips must be designed with
architectures that perform reasonably well over a wide range of
applications. The resulting architecture is a compromise. Novel
signal processing algorithms (that might be useful for specialized
DSP applications) cannot be optimally supported with these gen-
eral-purpose DSP chips.

However, because FPGA hardware is configured with internal
SRAM memory, FPGA chips can be configured to support a wide
range of applications, simply by downloading the appropriate
configuration bit-stream. FPGAs are like miniature silicon
foundries, with extremely short turn-around times. This allows a
system architect to design a custom architecture for any particular
application.

Let’s take the case of computing an inner-product. One optimized
approach (which was first published in the open literature by
Peled and Liu [1]) is called distributed arithmetic. For an excel-
lent tutorial on the use of distributed arithmetic for FIR filtering,
IIR filtering, and FFTs, the reader is referred to the article by
White [4].

A generic model of a distributed arithmetic filter is shown in
Figure 3. Distributed arithmetic calculations are accomplished
with:

■ table look-ups
■ additions
■ subtractions

All three of these operations are well suited to FPGA implemen-
tation.

One very interesting property of distributed arithmetic filters is
that the filter throughput is not dependent upon the filter length. It
depends on the input sample precision, instead. This is shown by
the linear plots in Figure 4. For a given input sample precision (B)
the processing rate remains constant, independent of the number
of filter taps.

For example, with a 100 MHz clock and an input sample precision
B = 12, the filter processing rate is 8.333 MHz, regardless of
whether the filter length (N) is 10, 20 100, or 200. For N = 200,
this is an effective computation rate of one MAC every 0.6 µsecs
— or 1.7 GMACs/sec.

Taking advantage of symmetrical filter coefficients
For many applications the set of filter coefficients is symmetrical.
This symmetry can exploited to reduce the logic required to
implement the filter.

The computation rate is reduced slightly. For a 100 MHz clock,
and 24-bit input samples, the computation rate will be 4 MHz.
Again, the computation rate is constant, regardless of the number
of taps. So, for a 200-tap filter this still produces an impressive
800 MMAC/sec computation rate.

Increasing the speed of multiplication using parallel
distributed arithmetic
Distributed arithmetic involves the computation of many partial
products (in parallel) and then the summation of all these partial
products, to compute the overall product. However, storage must
be provided (in the distributed LUTs) to hold all of the multi-
plication tables used to accomplish the partial product multipli-
cations.

The number of required LUTs can be minimized by using a shift
register to shift each multiple-bit input value into the FPGA, one
bit at time. The 1x1 partial products are then computed one bit at
a time, and accumulated inside the FPGA until the final output
is generated.

However, processing the data in this serial fashion (one-bit-at-a-
time) produces rather modest computational rates. When each
input variable is B bits in length, B clock cycles are needed to
complete a single inner-product calculation.

Speed can be improved in several ways. One approach is to split
each input word into L subwords, and then shift each of these
subwords into the FPGA in parallel. (The function generators in
FPGAs can be used to provide the required shift registers.) The
tap points of these shift registers are then used as address inputs
to the LUTs, which compute the partial products. This method
requires L-times as many LUTs, and so the speed-up comes at a
cost of a linear increase in the multiplication table storage
requirements. For example, an 80-tap filter using 12-bit input
samples and coefficients can be constructed with 2800 logic
slices, and will support a sample rate of 150 MHz. This is equiv-
alent to 12 billion MACs/sec.

An alternative to using the distributed LUTs to is to employ the
block memory that is available in the more-recently-introduced
FPGAs. For example, consider building a symmetrical 70-tap FIR

FPGAs:

B-bit
Parallel-to-serial

converter

B-bit shift registers

LUT address sequence

Partial products
stored in LUT

Register yn

Add/Subtract
(Subtract on

last term
of sequence)

2-1

Scaling accumulator

L
U
T

Figure 3

Figure 4

Copyright 2000 / All rights reserved DSP Engineering / Spring 2000

filter, in which there are only 35 unique filter coefficients. With
70 taps, a serial one-bit-at-a-time LUT approach would require
the storage of a huge number of partial product terms. The num-
ber of partial products becomes much smaller if the 35 tap points
on the shift register are partitioned into 5 terms:

■ 4 groups of 8 bits
■ 1 group of 3 bits

Now only four 256-entry multiplication tables, and one 8-entry mul-
tiplication table is needed to compute the partial products. These 5
multiplication tables can be stored in on-chip block memory, and a
simple adder tree can be employed to combine their outputs.

Fourier transforms
The discrete Fourier transform (DFT) is one of the most common
operations performed in signal processing systems, and it is
typically implemented using the fast Fourier transform (FFT)
algorithm.

A state-of-the-art DSP chip can perform a 1024-point complex
FFT on 16-bit complex samples in about 66 µsecs. Additional
time (~9 µsecs) is typically needed to perform a bit-reversal per-
mutation, if required.

Using a standard radix-4 Cooley-Tukey algorithm, and exploiting
only a modest amount of parallelism, the same FFT can be per-
formed in a Virtex FPGA in 41 µsecs — and this includes the bit-
reversal operation.

While these comparisons of arithmetic performance are useful,
there is still one extremely important consideration that is often
ignored when comparing FPGA performance to DSP chip or
ASIC performance. This is the I/O bandwidth.

With the exception of a few dedicated pins, nearly all of the pads
on an FPGA are available for I/O. This provides extremely high
I/O bandwidth in FPGA-based signal processing designs.

The large number of I/O pins (combined with the multiple banks
of internal memory) allow an engineer to employ a high degree of
parallelism in an FPGA design. In the FPGA-based FFT design
shown in Figure 5, separate memory banks are used for the
input/working memory buffer, and for the output memory buffer.

This permits I/O to be performed concurrently with the FFT com-
putation. So, in the case of the FPGA design, the 41-µsec execu-
tion time includes all input, output and computational operations.

Designing higher performance FFTs through
parallelism
The FFT algorithm provides many opportunities for exploitation
with parallelism. Current FPGAs provide the I/O bandwidth, the
on-chip memory and the logic resources to build highly concur-
rent single-chip FFT engines.

For example, using a direct partitioning of the standard radix-4
Cooley-Tukey FFT algorithm, one computation unit could be
assigned to each column of butterflies. This approach would
require a total of 5 butterfly engines, plus the memory buffers
between successive butterfly columns.

A 1024-point FFT could be computed in 1024 clock cycles. Using
a 100 MHz clock, the transform time is 10 µsecs. If required, more
parallelism could be used to produce a single-chip FFT solution
with sub 10 µsec computation time.

Conclusion
FPGAs are being employed in a wide variety of signal processing
applications because of their:

■ superior performance
■ low cost
■ flexibility
■ low power consumption

The telecom industry has been particularly quick to embrace
FPGA technology. Nearly 50% of all FPGA chips currently being
manufactured are being used in telecom and networking equip-
ment of one sort or another — wireless base stations, switches,
routers and modems, to name a few.

The versatility of FPGA technology allows the support of multi-
ple protocol standards. One application might be a universal cel-
lular handset that automatically recognizes different signaling
standards (such as GSM, CDMA, TDMA, or AMPs) and recon-
figures itself to accommodate the recognized protocol.

The flexibility and the high performance provided by FPGAs also
allows engineers to easily track evolving standards (such as
MPEG) and to work successfully with fluid standards (such as
ADSL).

FPGA technology already represents a significant fraction of cur-
rently-deployed signal processing hardware, and we are witness-
ing an exponential growth in the insertion of FPGAs into digital
signal processing systems. This explosive growth is being
enhanced by access to FPGA intellectual property (IP) cores from
all of the major FPGA suppliers, as well as 3rd-party IP designers.
With these resources, system engineers are able to focus on their
system architecture, instead of getting bogged down in the details
of lower-level modules, such as filters and transforms.

The continuing evolution of communication standards (and the
highly competitive pressures in the marketplace) dictate that engi-
neers must begin their design while standards are still evolving.
In addition, third-generation wireless standards (and future-gen-
eration wireless standards) will need to support multiple modula-
tion formats and air interface standards. FPGAs provide the flex-
ibility to achieve this, while simultaneously providing high levels
of performance.

xn
Input data

Input data is
written into the

X memory buffer
during the final
transform rank

FFT
processor

Output
memory

buffer
Y

Phase factor
memory

Output data is
written into the

Y memory buffer
during the final
transform rank

Input/Working
memory

buffer
X

xk

Figure 5

Copyright 2000 / All rights reserved DSP Engineering / Spring 2000

References

[1] Peled and B. Liu, “A New Hardware Realization of
Digital Filters”, IEEE Trans. on Acoust., Speech, Signal
Processing, Vol. 22, pp. 456-462, Dec. 1974.

[2] Xilinx Inc., The Programmable Logic Data Book, 1999.

[3] DSP Architectures, “DSP-24 Preliminary Data Sheet”,
Vancouver, WA 98665.
(http://www.dsparchitectures.com/dsp-24/dsp-24.htm)

[4] S. A. White, “Applications of Distributed Arithmetic to
Digital Signal Processing”, IEEE ASSP Magazine,
Vol. 6(3), pp. 4-19, July 1989.

[5] E. B. Hogenauer, “An Economical Class of Digital Filters
for Decimation and Interpolation’’, IEEE. Trans. Acoust.,
Speech Signal Processing, Vol. 29, No. 2, pp. 155-162,
April 1981.

[6] B. Sklar, Digital Communications Fundamentals and
Applications, Prentice Hall, Englewood Cliffs, New
Jersey, 1988.

[7] The Mathworks Inc, Matlab, Getting Started with Matlab,
Natick, Massachusetts, U.S.A, 1999.

[8] The Mathworks Inc, Simulink, Dynamic System Simulation
for Matlab, Using Simulink, Natick, Massachusetts, U.S.A,
1999.

[9] Xilinx Core Generator System,
http://www.xilinx.com/products/logicore/coregen/index.htm

[10] C. H. Dick and F. J. Harris, “Direct Digital Synthesis
— Some Options for FPGA Implementation”, SPIE
International Symposium On Voice Video and Data
Communication: Reconfigurable Technology: FPGAs for
Computing and Applications} Stream, Boston, MA, USA,
pp. 2-10, September 20-21 1999.

Dr. Chris Dick is the manager of the
Signal Processing Group at Xilinx Inc. He
is responsible for coordinating the DSP
IP engineering activities, and is the DSP
technical authority at Xilinx. Chris joined
Xilinx in 1997 from La Trobe University in
Melbourne Australia, where he was a pro-
fessor for 13 years. He has published more

than 60 journal and conference papers, and has been a speaker
at numerous international DSP and communications sympo-
siums. Chris holds PhD and bachelor’s degrees from La Trobe
University, both in electronic engineering.

If you have questions about this article, or if you
would like more information about Xilinx products,

you can contact Chris at:

Xilinx Inc.
2100 Logic Drive

San Jose, CA 95124
Tel: 408-879-5377
Fax: 408-626-6440

Email: chris.dick@xilinx.com

