

HUNT ENGINEERING
Chestnut Court, Burton Row,

Brent Knoll, Somerset, TA9 4BP, UK
Tel: (+44) (0)1278 760188,
Fax: (+44) (0)1278 760199,

Email: sales@hunteng.co.uk
http://www.hunteng.co.uk
http://www.hunt-dsp.com

HUNT ENGINEERING

NETWORK FILE SYNTAX
- a common standard for Hunt Engineering tools

such as Server/Loader & Heartconf
USER MANUAL

Software Version 4.13
Document Rev B
J.Thie 31/08/05

2 HUNT ENGINEERING Network File Syntax USER MANUAL

COPYRIGHT
This documentation and the product it is supplied with are Copyright HUNT
ENGINEERING 1999. All rights reserved. HUNT ENGINEERING maintains a policy
of continual product development and hence reserves the right to change product
specification without prior warning.

WARRANTIES LIABILITY and INDEMNITIES
HUNT ENGINEERING warrants the hardware to be free from defects in the material
and workmanship for 12 months from the date of purchase. Product returned under the
terms of the warranty must be returned carriage paid to the main offices of HUNT
ENGINEERING situated at BRENT KNOLL Somerset UK, the product will be repaired
or replaced at the discretion of HUNT ENGINEERING.

Exclusions - If HUNT ENGINEERING decides that there is any evidence of
electrical or mechanical abuse to the hardware, then the customer shall have no
recourse to HUNT ENGINEERING or its agents. In such circumstances HUNT
ENGINEERING may at its discretion offer to repair the hardware and charge for
that repair.

Limitations of Liability - HUNT ENGINEERING makes no warranty as to the
fitness of the product for any particular purpose. In no event shall HUNT
ENGINEERING’S liability related to the product exceed the purchase fee actually
paid by you for the product. Neither HUNT ENGINEERING nor its suppliers
shall in any event be liable for any indirect, consequential or financial damages
caused by the delivery, use or performance of this product.

Because some states do not allow the exclusion or limitation of incidental or consequential
damages or limitation on how long an implied warranty lasts, the above limitations may not
apply to you.

TECHNICAL SUPPORT
Technical support for HUNT ENGINEERING products should first be obtained from the
comprehensive Support section www.hunteng.co.uk/support/index.htm on the HUNT
ENGINEERING web site. This includes FAQs, latest product, software and
documentation updates etc. Or contact your local supplier - if you are unsure of details
please refer to www.hunteng.co.uk for the list of current re-sellers.

HUNT ENGINEERING technical support can be contacted by emailing
support@hunteng. co.uk, calling the direct support telephone number +44 (0)1278 760775,
or by calling the general number +44 (0)1278 760188 and choosing the technical support
option.

http://www.hunteng.co.uk/support/index.htm
www.hunteng.co.uk

3 HUNT ENGINEERING Network File Syntax USER MANUAL

TABLE OF CONTENTS
INTRODUCTION.. 5

THE NETWORK DESCRIPTION FILE (HEART BOARDS) 6
Carrier Board Declaration.. 6
C6x Processor and Program Declaration ... 6
FPGA / HERONIO Declaration .. 8
GDIO Declaration... 8
PCIF Declaration .. 8
Inter-Board Module Declaration (EM1C, EM1, EM2) ... 9
BDCONN / BDLINK / BDPATH Declaration ... 9
HEART Declaration .. 10
BDCAST Declaration .. 13
LISTEN Declaration .. 13
UMIRESET Declaration.. 14
BootSlot Declaration ... 14
Sample Network Description file for HEPC9 .. 15

THE NETWORK DESCRIPTION FILE (HERON-BASE2).................................. 17
Carrier Board Declaration.. 17
C6x Processor and Program Declaration ... 17
FPGA / HERONIO Declaration .. 18
PCIF Declaration .. 19
BootLink and BootPath Declaration ... 19
Host Path Declaration... 20
UMIRESET Declaration.. 20
FIFONOBLOCK Declaration.. 21
Sample Network Description file for HERON-BASE2 (1) ... 21
Sample Network Description file for HERON-BASE2 (2) ... 22
Sample Network Description file for HERON-BASE2 (3) ... 22

THE NETWORK DESCRIPTION FILE (HEPC8) ... 24
Carrier Board Declaration.. 24
C6x Processor and Program Declaration ... 24
BootLink and BootPath Declaration ... 25
Host Path Declaration... 26
FPGA / HERONIO Declaration .. 26
Sample Network Description file for HEPC8 .. 27

THE NETWORK DESCRIPTION FILE (C4X SYSTEMS)................................... 28
Carrier Board Declaration.. 28
C4x Processor and Program Declaration ... 28
BootLink and BootPath Declaration ... 29
Host Path Declaration... 30
Sample Network Description file for HEPC3 .. 30

NETWORK FILE SYNTAX... 32
NETWORK DESCRIPTION FILE SYNTAX.. 32

Describing Boards... 32
BD syntax... 32
BDCONN / BDLINK / BDPATH syntax (HEART boards only)... 33
C6 nodes syntax (HEPC8, HEART, and HERON-BASE2 boards only) .. 35
C4 nodes syntax (C4x carrier boards only)... 35
FPGA nodes syntax (HEPC8, HEART, and HERON-BASE2 boards only) 36
GDIO nodes syntax (HEART boards only).. 37
PCIF (Host Interface) nodes syntax (HEART and HERON-BASE2 boards only)........................... 37

4 HUNT ENGINEERING Network File Syntax USER MANUAL

EM2/EM1/EM1C nodes syntax (HEART boards only).. 38
BOOTLINK / BOOTPATH syntax (C4x boards, HEPC8, and HERON-BASE2 only) 38
HEART syntax (HEART boards only).. 39
BDCAST syntax (HEART boards only).. 40
LISTEN syntax (HEART boards only) ... 41
BOOTSLOT syntax (HEART boards only) .. 42
HOSTLINK syntax ... 42
UMIRESET syntax (HEART and HERON-BASE2 boards only) ... 43
FIFONOBLOCK syntax (HERON-BASE2 boards only) ... 43
Example Network Description Files .. 43

FEATURE SPOTLIGHT .. 46
HEART FIFO RESET USING UMI.. 46
USING INTER-BOARD CONNECTORS.. 46
SERVER LINKS ... 48

TECHNICAL SUPPORT.. 49

5 HUNT ENGINEERING Network File Syntax USER MANUAL

Introduction

This document describes the network file syntax, as used by tools such as HeartConf and
the Server/Loader. A network file is a simple ASCII file that you can create with edit tools
such as NotePad (Windows), ‘vi’ (Linux), or C/C++ compiler IDE’s such as Microsoft’s
Visual Developer (Visual C/C++).

A network file describes board and nodes in a HUNT ENGINEERING system, and their
inter-connections (e.g.. comports, fifo’s, fibre-links). A network file can also describe what
fifo connections to create (for carrier boards that support HEART, such as the HEPC9.

6 HUNT ENGINEERING Network File Syntax USER MANUAL

The Network Description File (HEART boards)

The Network Description File is an ASCII file that lists all modules, carrier boards and their
inter-connections, as well as HEART connections to be made. (Instead of ‘modules’ it is
better to talk about ‘nodes’; some modules may have more than 1 processor or
programmable FPGA.) The following information must be present:

• A complete list of carrier boards (HEPC9, etc.).

• A complete list of the nodes (C6x) and programs to be loaded onto them.

• A complete list of the FPGA or HERONIO modules and their bit-streams.

• A complete list of all GDIO modules if HEART connections are to access them.

• A complete list of Host Interfaces (when connected nodes need to be served).

• A complete list of Inter-Board Connectors (EM2, EM1 or EM1C).

• A complete list of connections between boards (e.g.EM2 – EM2 channels).

• HEART connections (HEART boards such as the HEPC9).

Carrier Board Declaration
An example entry for declaring an HEPC9 is as follows:
BD API hep9a 0 0

The first item, BD, tells the Server/Loader that on this line a board is declared. The second
item, API, tells the Server/Loader that the board is to be accessed via the API. (Obviously,
the API must have been installed correctly for this to work, eventually.) The remainder is
API related: API board name ("hep9a"), board number, and device number, respectively.

Please note that the board number is the number selected by the switch on the HEPC9. It
has possible values ranging from 0 to 15. If this switch is set to, for example, 4, then your
BD declaration becomes:
BD API hep9a 4 0

There is an optional keyword ‘remote’. This indicates that a board’s HSB and RESET
should be accessed via another board (connected to it with Inter-Board Connector module
links). Typically this is used when a board is not local, i.e. is not in the current PC, but
instead, for example, is embedded or is in another PC.

C6x Processor and Program Declaration
For example, if there are two HERON modules inserted on the HEPC9 above, then the
processors and programs to boot onto them are defined as follows:
c6 0 HERON1 ROOT (1) 00000001 heron1.out
c6 0 HERON2 NORMAL (0) 00000002 heron2.out

The first item tells the Server/Loader that a 'C6x processor is declared. The second item
tells the Server/Loader via what board this processor is accessed. The number is the
number in the list of BD declarations you made. The first BD declaration is 0; the second
BD declaration is 1, and so on.

7 HUNT ENGINEERING Network File Syntax USER MANUAL

To emphasise that the second item is not the board number or board switch, but the BD
entry number, consider the following: -
BD API hep9a 3 0
BD API hep9a 5 0
c6 1 HERON1 ROOT (1) 00000001 heron1.out
c6 0 HERON2 NORMAL (0) 00000002 heron2.out

Module HERON1 is on board 1, that is, “hep9a 5”, and module HERON2 is on board 0,
that is, “hep9a 3”.

The third item is the name of the processor. You can choose any name you like. The fourth
item tells the Server/Loader what type of node it is: ROOT node or NORMAL node. A
ROOT node has a direct connection to the PC where the Server/Loader is running and a
NORMAL node is a processor at least 1 hop away from the Server/Loader PC. Legacy
boards such as the HEPC8 and HEPC3 use such information. With the HEPC9 all nodes
are effectively ROOT nodes, as all can be connected to the host. You can choose ROOT or
NORMAL as you please, HeartConf and the Server/Loader will ignore this for HEPC9
(and other HEART boards). For network files to maintain some compatibility with the
HEPC8 choose the first HERON module in your system to be ROOT, and all others
NORMAL, per set of nodes on one board.

The fifth item is the Code Composer Studio ID. Code Composer Studio labels processors
as they appear along the "JTAG scan path". This is not necessarily the same as the labels we
put on them in the network description file. When you use the -g option, the Code
Composer Studio ID is used to map program file onto node.

The sixth item is the HERON module's ID. On a HEPC9, the first slot will have ID 1, the
second will have ID 2, the third ID3, and the fourth ID 4. But note that the HERON ID is
made up of the HEPC9's board number (bits 7..4) and the slot number (bits 3..0). So if the
HEPC9 board number switch is set to 4, the HERON IDs become 0x41, 0x42, 0x43 and
0x44. Thus with a HEPC9 board switch set at 0, we have:
BD API hep9a 0 0
c6 0 HERON1 ROOT (1) 00000001 heron1.out
c6 0 HERON2 NORMAL (0) 00000002 heron2.out

but when the HEPC9 board switch is set to 4, we will have:
BD API hep9a 4 0
c6 0 HERON1 ROOT (1) 0x41 heron1.out
c6 0 HERON2 NORMAL (0) 0x42 heron2.out

The last entry is the program name. This should be an executable file produced by the
Texas Instruments' C compiler for the 'C6x. With the HEPC9 and other HEART boards,
there may be 1 program file declared, but on other boards, such as the HEPC8, 2 program
files may be declared.

Please note that for the HeartConf tool, the processor is not actually loaded. However,
the parser still needs a program name there. If you use a network file exclusively for use
with HeartConf, you may write anything in place of the program name, for example “a”
or “no-file”. But if you also use the network file for use with the Server/Loader, then
you need to specify a proper filename. A network file fit for use with the Server/Loader
will certainly also work with HeartConf. A file fit for use with HeartConf may need to
have proper program names specified before it works with the Server/Loader.

8 HUNT ENGINEERING Network File Syntax USER MANUAL

FPGA / HERONIO Declaration
For example, if there is an FPGA module inserted on the HEPC9 above, then the module
and program to boot onto them are defined as follows:
fpga 0 FPGA1 NORMAL 00000003 mybitstream.rbt

The first item tells the Server/Loader that a FPGA module is declared. The second item
tells the Server/Loader via what board this module is accessed. The number is the number
in the list of BD declarations you made. The first BD declaration is 0; the second BD
declaration is 1, and so on.

The third item is the name of the module. You can choose any name you like. The fourth
item tells the Server/Loader what type of node it is: always type NORMAL node.

The fifth item is the FPGA module's HERON ID. On a HEPC9, the first slot will have ID
1; the second will have ID 2, the third ID3, and the fourth ID 4. But note that the HERON
ID is made up of the HEPC9's board number (bits 7..4) and the slot number (bits 3..0). So
if the HEPC9 board number switch is set to 4, the HERON IDs become 0x41, 0x42, 0x43
and 0x44. Thus with a HEPC9 set at 0, we have:
BD API hep9a 0 0
fpga 0 FPGA1 NORMAL 0x03 mybitstream.rbt

but when the HEPC9 is set to 4, we will have:
BD API hep9a 4 0
fpga 0 FPGA1 NORMAL 0x43 mybitstream.rbt

The last entry is a bit-stream file name. This should be an rbt file produced by Xilinx tools.

Please note that for the HeartConf tool, the FPGA is not actually programmed.
However, the parser still needs a bit-stream file name there. If you use a network file
exclusively for use with HeartConf, you may write anything in place of the bit-stream
file name, like “a” or “no-rbt”. But if you also use the network file for use with the
Server/Loader, then you need to specify a proper bit-stream. A network file fit for use
with the Server/Loader will certainly also work with HeartConf.. A network file fit for
use with HeartConf may need to have proper bit-stream file names specified before it
works with the Server/Loader.

GDIO Declaration
The GDIO declaration gives you a ‘named module’ that you can use in a HEART
statement to create a HEART connection between the GDIO and another module. The
GDIO statement serves no further purpose, as nothing is loaded onto a GDIO module and
it cannot be programmed or configured. An example of a GDIO statement is:
GDIO 0 HEGD11 NORMAL 00000003

In this example the GDIO is situated in slot 3 of a HEPC9 with board switch 0.

PCIF Declaration
The PCIF declaration gives you a ‘named entity’ (denoting the host interface) that you can
use in a HEART statement to create a HEART connection between the host interface and
a module. The PCIF statement serves no further purpose, as it cannot be programmed or

9 HUNT ENGINEERING Network File Syntax USER MANUAL

configured. An example of a PCIF statement is:
PCIF 0 host NORMAL 00000005

Note that the ‘slot id’ used (00000005 in the example) must always be 5+(board switch*16).
In this example the board switch was 0.

Inter-Board Module Declaration (EM1C, EM1, EM2)
With version 4.05 (released july 4, 2002), 3 inter-board modules are now supported by the
network file syntax. They are the EM1C, EM1 and EM2. They can be used in the same
fashion as any other node (such as a GDIO or a PCIF). The EM1C is an inter-board
module with 2 comports, 1 in (fixed) and 1 out (fixed), without reset or HSB. This module
is purely used for connecting a C4x to a C6x system but without any sharing of control
between them. The EM1 has 2 comports as well, 1 comport in (fixed) and 1 comport out
(fixed), but here reset and HSB are present. It can be used to connect two HEPC9’s
together. The EM2 is an inter-board module that can connect 2 or more HEPC9’s together
with high-speed links. There are 6 links in and 6 links out.

The EM1C/EM1/EM2 declaration gives you a ‘named entity’ (denoting the inter-board
connector) that you can use in a BDCONN statement, and in a HEART statement to
create a HEART connection between the inter-board connector and a module. The
EM1C/EM1/EM2 statement serves no further purpose, as the inter-board connector
cannot be programmed or configured. An example of an inter-board module statement is:
#keyword boardno name type heron-id

EM1C 0 myem1c NORMAL 0x06
EM1 1 myem1 NORMAL 0x16
EM2 2 myem2 NORMAL 0x26

Note that the ‘heron id’ used must always be 6+(board switch*16). There can also be at
most 1 inter-board module per board. To define connections you made between inter-
board modules, use the BDCONN or BDLINK statement.

BDCONN / BDLINK / BDPATH Declaration
A BDCONN declaration defines a connection between 2 Inter-Board Connector modules.
The Inter-Board Connector modules must have been defined earlier in the network file. An
example of a BDCONN statement is:
EM2 0 em2a NORMAL 0x16
EM2 1 em2b NORMAL 0x26
BDCONN em2a 1 em2b 2

This BDCONN statement uses defined Inter-Board Connector modules ‘em2a’ and ‘em2b’,
both of which are of type EM2. The statement describes channel 1 of ‘em2a’ connected to
channel 2 of ‘em2b’. Note that the connection defined is duplex. In case you have hardware
that implements a simplex (one way) connection, use the optional ONEWAY keyword:
EM1 0 em1a NORMAL 0x16
EM1 1 em1b NORMAL 0x26
BDCONN em1a 1 em1b 2 oneway

This defines a connection from ‘em1a’ channel 1 to ‘em1b’ channel 2.

10 HUNT ENGINEERING Network File Syntax USER MANUAL

Similarly, a BDLINK declaration defines a connection between a HEPC9 and another
HEPC9. The actual specifics of the connection depend on the particular Inter-Board
Connector that you use. The BDLINK is a general statement that may describe many
different Inter-Board Connector modules. It is therefore important that you specify the
correct details of the particular Inter-Board Connector that you use. An example of a
BDLINK statement is:
BDLINK 0 1 2 3

This means that an HEPC9, board index 0, channel 1 is connected to another HEPC9,
board index 2, channel 3. ‘Channel’ relates to the cable ‘slot’ used with the Inter-Board
Connector. For EM1’s and EM1C’s the channel number is always 0. For EM2’s you have a
choice of 6 channels 0..5.

A BDLINK statement defines a duplex connection. Use BDPATH to define a simplex
connection. You would need two BDPATH declarations to emulate one BDLINK
declaration. For example:
BOOTPATH 0 2 1 0
BOOTPATH 1 0 0 2
is equal to:
BOOTLINK 0 2 1 0

The links between Inter-Board Modules are not only used to create FIFO connections, but
also to propagate HSB and reset. By default, the Server/Loader and HeartConf assume that
any Inter-Board connection defined propagates HSB and reset. However, between inter-
connected boards there may only be at most one HSB connection (path) and at most 1 reset
connection (path). Or, in other words, ‘loops’ are not allowed. Keywords NOHSB and
NORESET allow you to select what Inter-Board connections are not to be used to
propagate HSB and reset. Simple example:

EM2 0 em2a NORMAL 0x16
EM2 1 em2b NORMAL 0x26
BDCONN em2a 0 em2b 0
BDCONN em2a 1 em2b 1

Board 0 is connected to board 1 via channels 0 and 1 of ‘em2a’. This means that HSB is
propagated through 2 paths from board 0 to board 1. Similarly, reset is propagated through
2 paths from board 0 to board 1. For example, to select channel 0 for HSB and reset:
EM2 0 em2a NORMAL 0x16
EM2 1 em2b NORMAL 0x26
BDCONN em2a 0 em2b 0
BDCONN em2a 1 em2b 1 NOHSB NORESET

HEART Declaration
The HEART declaration asks the Server/Loader and HeartConf to create a connection
between slots, using the HEART ring. In previous sections it is shown how you can name
any possible ‘entity’ on a carrier board (HERON modules, GDIO modules, host interfaces
(PCIF), inter-board connectors (IBC), FPGA modules, and more). Using an entity’s name
you can define connections between it and another entity. I use the word ‘entity’ to make
include both slots and devices such as the host interface. For example, to have the
Server/Loader create a HEART connection between one HERON module and another:

11 HUNT ENGINEERING Network File Syntax USER MANUAL

#---
Nodes description
ND BD NDNAME NDType CC-id HERON-ID filename(s)
#---
 c6 0 HERON1 ROOT (0) 00000001 heron1.out
 c6 0 HERON2 NORMAL (1) 00000002 heron2.out
#---
HEART from:slot fifo to:module fifo timeslots
#---
 HEART HERON1 0 HERON2 1 1

This will tell the Server/Loader to create a HEART connection from the HERON module
in slot 1 to the HERON module in slot 2, using 1 timeslot. To create a duplex connection,
you would have to add to this the following line:
 HEART HERON2 1 HERON1 0 1

As a second example, to have the Server/Loader create a HEART connection between a
HERON module and a GDIO module and a host interface:
#---
Nodes description
ND BD NDNAME NDType CC-id HERON-ID filename(s)
#---
 c6 0 HERON1 ROOT (0) 00000001 heron1.out
 Gdio 0 hegd1 NORMAL 00000002
 pcif 0 host NORMAL 00000005

#---
HEART from:slot fifo to:module fifo timeslots
#---
 HEART hegd1 1 HERON1 2 1
 HEART HERON1 0 host 3 1
 HEART host 3 HERON1 0 1

This will tell the Server/Loader to create a HEART connection from the GDIO module in
slot 2 to the HERON module in slot 1, using 1 timeslot. The GDIO is to output on fifo 1,
and the HERON module can read the GDIO’s data from fifo 2. The next two HEART
statements will create a duplex connection between the HERON module and the host
interface. A PC program can now communicate with the DSP by reading from or writing to
FIFO 3. The DSP can communicate with the PC by reading from or writing to FIFO 0.

Specifying timeslots in a HEART statement
The last (sixth) parameter in a HEART statement is the number of timeslots. On a HEPC9
there’s a total of 6 timeslots, each timeslot denoting about 63 Mb/sec. Therefore, if your
application requires, for example, 100 Mb/sec between a HEGD9 and an FPGA, you can
specify in a HEART statement to use 2 timeslots (allowing a maximum of 126 Mb/sec):
#---
HEART from:slot fifo to:module fifo timeslots
#---
 HEART hegd9 1 FPGA 2 2

The Server/Loader will try to ‘map’ the timeslots you requested onto actual timeslots.
Given that resources are limited it may be that it’s impossible to ‘map’ all requests. In that
case the Server/Loader will report this and then will then halt execution.

You may also try to map timeslots yourself. There are two ways. One is the ‘t=’ parameter,

12 HUNT ENGINEERING Network File Syntax USER MANUAL

and the other is the ‘v=’ parameter. With the ‘t=’ parameter you specify sequentially what
actual timeslots you want to use. Using the same example:
#---
HEART from:slot fifo to:module fifo timeslots
#---
 HEART hegd9 1 FPGA 2 t=0,2

This will tell the Server/Loader that 2 timeslots are required between the HEGD9 and the
FPGA, timeslot 0 and timeslot 2. Timeslots 1, 3, 4, and 5 are unused.

With the ‘v=’ parameter you specify a ‘mask’ rather than a sequence. Eg timeslot 0 would
be 0x1, timeslot 1 is 0x2, timeslot 2 is 0x4 and so on. Thus using two timeslots 0 and 2
would give a ‘mask’ of 0x5:
#---
HEART from:slot fifo to:module fifo timeslots
#---
 HEART hegd9 1 FPGA 2 v=5

Non Blocking Mode
HEART also supports a non-blocking mode. This means that the ‘sender’ of data will
continue to send data even if when the ‘receiver’ is not able to read the data (fast enough).
To select non-blocking mode, add the keyword NOBLOCK. Example:
#---
HEART from:slot fifo to:module fifo timeslots
#---
 HEART hegd1 1 HERON1 2 1 noblock

Server connections
The Server/Loader will assume that any processor node that is connected to a host
interface want to be ‘served’. That is, is assumes that such nodes want to execute functions
like ‘fwrite’, ‘fprintf’ and other ‘stdio’ functions over that connection. The Server/Loader
will both find direct node – host connections as well as connections that go via Inter-Board
Connector modules.

Frequently you will want to create node – host connections for yourself, and you don’t want
the Server/Loader to use those connections for the Server. In that case, use the optional
keyword NOSERVE. For example:
 HEART HERON1 0 host 3 1
 HEART host 3 HERON1 0 1

 HEART HERON1 1 host 4 1 NOSERVE
 HEART host 4 HERON1 1 1 NOSERVE

Host fifo 3 will then be served by the Server/Loader, executing Server/Loader stdio
functions called on module HERON1. Host fifo 4 is free for use by yourself.

It has to be said that the Server/Loader will at most only use 1 link per processor node to
serve stdio requests. Therefore, the NOSERVE keyword, in effect, selects a fifo connection
that certainly isn’t used by the Server/Loader to serve stdio requests. Moreover, if
NOSERVE is used for all node – host connections for that node, then no fifo connection
is available for serving stdio requests, and even if stdio requests are called on the node, they
will not succeed. The Server/Loader is not able to pick up or recognise such ‘errors’.

UMI reset of HEART FIFOs
Within HEART, there is a possibility to reset FIFO’s. This is done by ‘associating’ a FIFO

13 HUNT ENGINEERING Network File Syntax USER MANUAL

with a UMI line (one or several). FIFO’s that are ‘associated’ with a UMI line will be reset if
that UMI line is set to active. To associate a FIFO with a UMI line, you can use the
optional keyword UMI with a HEART statement; or use the stand-alone UMIRESET
statement. The advantage of using the UMI keyword with a HEART statement is that all
FIFO’s between two nodes would be reset when the associated UMI line becomes active.

Example:
 HEART HERON1 0 host 3 1 UMI 0
 HEART host 3 HERON1 0 1 UMI 0,1

In the first HEART statement, FIFO 0 (out) of node HERON1 and FIFO 3 (in) of the
host interface are ‘associated’ with UMI 0. In the second HEART statement, FIFO 3 (out)
of the host interface and FIFO 0 (in) of node HERON1 is ‘associated’ with both UMI 0
and 1. Now, if UMI line 0 becomes active, all 4 FIFO’s discussed are reset. And when UMI
line 1 becomes active, FIFO 3 (out) of the host interface and FIFO 0 (in) of node
HERON1 are reset.

BDCAST Declaration
The BDCAST declaration defines a one-way connection from a module into a HEART
ring. The idea is that any other module can ‘listen’ to whatever is broadcast onto this ring.
The broadcast is a ‘named’ entity and consumes ones whole ring.

An example of a BDCAST statement is:
BDCAST name module 0 1

This defines a broadcast called ‘name’, and the broadcaster is node ‘module’. The ‘module’
node uses fifo 0 to broadcast over, and it uses 1 timeslot.

UMI reset of HEART FIFOs
Within HEART, there is a possibility to reset FIFO’s. This is done by ‘associating’ a FIFO
with a UMI line. You can select one or several UMI lines. FIFO’s that are ‘associated’ with
a UMI line will be reset if that UMI line is set to active. To associate a FIFO with a UMI
line, you can use the optional keyword UMI with a BDCAST statement; or use the stand-
alone UMIRESET statement. The advantage of using the UMI keyword with a BDCAST
statement is that all FIFO’s relating to a BDCAST would be reset when the associated UMI
line becomes active.

Example:
BDCAST name module 0 1 UMI 0

In this BDCAST statement, FIFO 0 (out) of node ‘module’ is ‘associated’ with UMI 0. If
there are listeners on other boards connected to the board ‘module’ is on, the FIFO’s over
which Inter-Board connections are made would also be ‘associated’ with that UMI line. The
actual reset will take place only if UMI line 0 is made active.

LISTEN Declaration
The LISTEN statement makes a module ‘listen’ to a broadcast. This is done by creating a
one-way link from a HEART ring onto a module. In the statement you tell the Server/
Loader what named broadcast to listen to. Eg, assuming a broadcast as defined above:
LISTEN name module 0

14 HUNT ENGINEERING Network File Syntax USER MANUAL

This means that ‘module’ is listening to broadcast ‘name’, reading data in over fifo 0.

Non Blocking Mode
HEART also supports a non-blocking mode. This means that the ‘sender’ of data will
continue to send data even if when the ‘receiver’ is not able to read the data (fast enough).
To select non-blocking mode, add the keyword NOBLOCK. Example:
#---
LISTEN bdcast module fifo
#---
 LISTEN bbc1 HERON1 2 noblock

UMI reset of HEART FIFOs
Within HEART, there is a possibility to reset FIFO’s. This is done by ‘associating’ a FIFO
with a UMI line. You can select one or several UMI lines. FIFO’s that are ‘associated’ with
a UMI line will be reset if that UMI line is set to active. To associate a FIFO with a UMI
line, you can use the optional keyword UMI with a LISTEN statement; or use the stand-
alone UMIRESET statement.

Example:
LISTEN name module 0 UMI 0

In this LISTEN statement, FIFO 0 (in) of node ‘module’ is ‘associated’ with UMI 0. The
actual reset will take place only if UMI line 0 is made active.

UMIRESET Declaration
Within HEART, there is a possibility to reset FIFO’s. This is done by ‘associating’ a FIFO
with a UMI line. You can select one or several UMI lines. FIFO’s that are ‘associated’ with
a UMI line will be reset if that UMI line is set to active. To associate a FIFO with a UMI
line, you can use the stand-alone UMIRESET statement (or use the optional UMI keyword
in a HEART, BDCAST or LISTEN statement). Example:
UMIRESET heronx 0 in 0
UMIRESET herony 2 out 0,1

In the first UMIRESET statement, fifo 0 (in: from HEART to node) of node ‘heronx’ is
associated with UMI line 0. In the second UMIRESET statement, fifo 2 (out: from node to
HEART) of node ‘herony’ is associated with UMI line 1. The actual reset (of heronx fifo 0
(in) and herony fifo 2 (out)) will take place if UMI line 0 is made active. If UMI line 1 is
made active, only herony fifo 2 (out) will be reset.

BootSlot Declaration
This is rarely used, as modules are most easily configured using HEART statements.
HERON modules have routing jumpers, and when used, one jumper connects the selected
timeslot to a module’s ‘in’ FIFO. Another jumper connects the selected timeslot to a
module’s ‘out’ FIFO. With a BOOTSLOT statement you define what timeslot you selected
on a module (‘in’ and ‘out’ are assumed to have been chosen identical).

If the ‘-j’ option is used, the Server/Loader will try to boot a processor module using the
specified timeslot. The timeslot value must match the boot jumper as set on the HERON
module that you intend to boot. If the ‘-j’ option is not used, the boot jumper is ignored;
the Server/Loader still uses the timeslot you specified, and boots the HERON module by
creating a FIFO link by programming HEART. But the statement is optional in this case;

15 HUNT ENGINEERING Network File Syntax USER MANUAL

where it not there, the Server/Loader assumes timeslot 0. The following line shows you
how to declare a timeslot value over which a HERON node is to be booted:
BOOTSLOT HERON4 1

The HERON module named ‘HERON4’ will be booted over timeslot 1.

Sample Network Description file for HEPC9
For one HEPC9 with one DSP, one FPGA module, a GDIO module, and a HERONIO
module, the network description file could look like:
#---
Board description
BD API Board_type Board_Id Device_Id
#---
 BD API hep9a 0 0

#---
Nodes description
ND BD NDNAME NDType CC-id HERON-ID filename(s)
#---
 c6 0 HERON1 ROOT (0) 00000001 heron1.out
 heronio 0 heronio1 NORMAL 00000002 heronio1.rbt
 fpga 0 FPGA1 NORMAL 00000003 fpga1.rbt
 gdio 0 hegd2 NORMAL 00000004
 pcif 0 host NORMAL 00000005

#---------------------------------------
BOOTSLOT ND_NAME TIMESLOT
#---------------------------------------
 BOOTSLOT HERON1 2

#--
Number of the link connected to the host system
HOSTLINK PORT
#--
 HOSTLINK 0

#---
HEART from:slot fifo to:module fifo timeslots
#---
 HEART HERON1 0 host 3 1
 HEART host 3 HERON1 0 1
 HEART HERON1 1 heronio1 1 1
 HEART heronio1 1 HERON1 1 1
 HEART hegd2 5 FPGA1 4 1
 HEART FPGA1 3 HERON1 2 1

This will tell the Server/Loader to create a duplex connection between the DSP module
and the host interface. A PC program can now communicate with the DSP by reading/
writing FIFO 3. The DSP can communicate with the PC by reading/writing FIFO 0.

The third and fourth statement will tell the Server/Loader to create a duplex connection
between the DSP in slot 1 and the HERONIO in slot 2. The DSP can communicate with
the HERONIO by reading/writing FIFO 1. The HERONIO can communicate with the
DSP by reading writing FIFO 1.

The fifth statement asks the Server/Loader to create a one-way connection from the GDIO

16 HUNT ENGINEERING Network File Syntax USER MANUAL

in slot 4 to the FPGA in slot 3. The GDIO outputs on FIFO 5, and the FPGA reads the
GDIO data in at FIFO 4.

The sixth statement asks the Server/Loader to create a one-way connection from the
FPGA in slot 3 to the DSP in slot 1. The DSP can read FPGA data from FIFO 2, but
cannot write data back to the FPGA (in this example). The FPGA outputs its data onto
FIFO number 3.

So in this example we have a GDIO (5) -> (4) FPGA (3) -> (2) DSP ‘pipeline’. The DSP
has duplex communications with the HERONIO over FIFO 1, and with the PC over FIFO
0. The PC can communicate then with DSP over host FIFO 3.

17 HUNT ENGINEERING Network File Syntax USER MANUAL

The Network Description File (HERON-BASE2)

The Network Description File is an ASCII file that lists all carrier boards, modules and their
inter-connections. (Instead of ‘modules’ it is better to talk about ‘nodes’; some modules may
have multiple processors or FPGA’s.) The following information must be present:

• A complete list of carrier boards (HERON-BASE2)

• A complete list of the nodes (C6x) and programs to be loaded onto them.

• A complete list of the FPGA or HERONIO modules and their bit-streams.

• A complete list of boot link connections.

• Route to host.

Carrier Board Declaration
An example entry for declaring an HERON-BASE2 is as follows:
BD API heb2a 0 0

The first item, BD, tells the Server/Loader that on this line a board is declared. The second
item, API, tells the Server/Loader that the board is to be accessed via the API. (Obviously,
the API must have been installed correctly for this to work, eventually.) The remainder is
API related: API board name ("heb2a"), board number, and device number, respectively.

Please note that the board number is the number selected by the switch on the HERON-
BASE2. It has possible values ranging from 0 to 15. If this switch is set to, for example, 4,
then your BD declaration becomes:
BD API heb2a 4 0

C6x Processor and Program Declaration
For example, if there are two HERON modules inserted on the HERON-BASE2 above,
then the processors and programs to boot onto them are defined as follows:
c6 0 HERON1 ROOT (1) 00000001 heron1.out
c6 0 HERON2 NORMAL (0) 00000002 heron2.out

The first item tells the Server/Loader that a 'C6x processor is declared. The second item
tells the Server/Loader via what board this processor is accessed. The number is the
number in the list of BD declarations you made. The first BD declaration is 0; the second
BD declaration is 1, and so on.

The third item is the name of the processor. You can choose any name you like. The third
item tells the Server/Loader what type of node it is: ROOT node or NORMAL node. A
ROOT node has a direct connection to the PC where the Server/Loader is running and a
NORMAL node is a processor at least 1 hop away from the Server/Loader PC. There must
be exactly one ROOT node in a network description file.

The fourth item is the Code Composer Studio ID. Code Composer Studio labels processors
as they appear along the "JTAG scan path". This is not necessarily the same as the labels we
put on them in the network description file. When you use the -g option, the Code
Composer Studio ID is used to map program file onto node.

18 HUNT ENGINEERING Network File Syntax USER MANUAL

The fifth item is the HERON module's ID. On a HERON-BASE2, the first slot will have
ID 1, and the second slot will have ID 2. But note that the HERON ID is made up of the
HERON-BASE2's board number (bits 7..4) and the slot number (bits 3..0). So if the
HERON-BASE2 board number switch is set to 4, the HERON IDs become 0x41 and
0x42. Thus with a HERON-BASE2 board switch set at 0, we have:
BD API heb2a 0 0
c6 0 HERON1 ROOT (1) 00000001 heron1.out
c6 0 HERON2 NORMAL (0) 00000002 heron2.out

but when the HERON-BASE2 board switch is set to 4, we will have:
BD API heb2a 4 0
c6 0 HERON1 ROOT (1) 0x41 heron1.out
c6 0 HERON2 NORMAL (0) 0x42 heron2.out

The last entry is the program name. This should be an executable file produced by the
Texas Instruments' C compiler for the 'C6x. With the HERON-BASE2, 2 program files
may be declared. In case 2 are declared, the first is executed first, the second program
second. You cannot just use any file as the first file. The Server/Loader expects an
executable program that sends a specific amount of data back to the Server/Loader, and
which then "resets" the processor. Two such programs are present in
\hesl\etc\c6x\eeprom. They are eeprom62.out and eeprom67.out. The
processor entries would then become:
c6 0 HERON1 ROOT (1) 00000001 eeprom62.out heron1.out
c6 0 HERON2 NORMAL (0) 00000002 eeprom67.out heron2.out

assuming that the second processor is a 'C67xx processor, and the first a 'C62xx. You
would only use eeprom62/67.out if you use the -c option of the Server/ Loader.

Please note that for the HeartConf tool, the processor is not actually loaded. However,
the parser still needs a program name there. If you use a network file exclusively for use
with HeartConf, you may write anything in place of the program name, for example “a”
or “no-file”. But if you also use the network file for use with the Server/Loader, then
you need to specify a proper filename. A network file fit for use with the Server/Loader
will certainly also work with HeartConf. A file fit for use with HeartConf may need to
have proper program names specified before it works with the Server/Loader.

FPGA / HERONIO Declaration
For example, if there is an FPGA module inserted on the HERON-BASE2 above, then the
module and program to boot onto them are defined as follows:
fpga 0 FPGA1 NORMAL 0x1 mybitstream.rbt

The first item tells the Server/Loader that a FPGA module is declared. The second item
tells the Server/Loader via what board this module is accessed. The number is the number
in the list of BD declarations you made. The first BD declaration is 0; the second BD
declaration is 1, and so on.

The third item is the name of the module. You can choose any name you like. The fourth
item tells the Server/Loader what type of node it is: always type NORMAL node.

The fifth item is the FPGA module's HERON ID. On a HERON-BASE2, the first slot will
have ID 1 and the second will have ID 2. But note that the HERON ID is made up of the
HERON-BASE2's board number (bits 7..4) and the slot number (bits 3..0). So if the

19 HUNT ENGINEERING Network File Syntax USER MANUAL

HERON-BASE2 board number switch is set to 4, the HERON IDs become 0x41 and
0x42. Thus with a HERON-BASE2 set at 0, we have:
BD API heb2a 0 0
fpga 0 FPGA1 NORMAL 0x03 mybitstream.rbt

but when the HERON-BASE2 is set to 4, we will have:
BD API heb2a 4 0
fpga 0 FPGA1 NORMAL 0x43 mybitstream.rbt

The last entry is a bit-stream file name. This should be an rbt file produced by Xilinx tools.

Please note that for the HeartConf tool, the FPGA is not actually programmed.
However, the parser still needs a bit-stream file name there. If you use a network file
exclusively for use with HeartConf, you may write anything in place of the bit-stream
file name, like “a” or “no-rbt”. But if you also use the network file for use with the
Server/Loader, then you need to specify a proper bit-stream. A network file fit for use
with the Server/Loader will certainly also work with HeartConf. A network file fit for
use with HeartConf may need to have proper bit-stream file names specified before it
works with the Server/Loader.

PCIF Declaration
The PCIF declaration gives you a ‘named entity’ (denoting the host interface) that you can
use in a UMIRESET or FIFONOBLOCK statement. The PCIF statement serves no
further purpose, as it cannot be programmed or configured. An example of a PCIF
statement is:
PCIF 0 host NORMAL 00000005

Note that the ‘slot id’ used (00000005 in the example) must always be 5+(board switch*16).
In this example the board switch was 0.

BootLink and BootPath Declaration
The Server/Loader needs to know via what FIFOs it should boot NORMAL nodes. The
following line shows you how to declare a connection between processors heron1 and
heron2 (as declared in a previous section).
BOOTLINK HERON1 1 HERON2 0

The first entry, BOOTLINK, tells the Server/Loader that this line declares a connection
between one processor and an adjacent processor. In this example, processor HERON1's
FIFO 1 is connected to processor HERON2's FIFO 0.

BOOTLINK declares a two-way connection: from HERON1 to HERON2, and from
HERON2 to HERON1. Processor HERON 1 can send data to processor HERON2 via
FIFO 2, and can also read data from processor HERON2 from FIFO 2. Processor
HERON2 can send data to HERON1 via FIFO 0, and can also read data from HERON1
from FIFO 0.

However, this may not always be the case. In case of one-way connections, you can use:
BOOTPATH HERON1 1 HERON2 0

This declares only a connection from HERON1 to HERON2. You would need two

20 HUNT ENGINEERING Network File Syntax USER MANUAL

BOOTPATH declarations to emulate one BOOTLINK declaration. For example:
BOOTPATH HERON1 1 HERON2 0
BOOTPATH HERON1 0 HERON2 1
is equal to:
BOOTLINK HERON1 1 HERON2 0

Host Path Declaration
The connection between the ROOT node and the host PC that runs the Server/Loader is
declared as follows:
HOSTLINK 0

The first entry (HOSTLINK) tells the Server/Loader that this line declares what FIFO or
link of the ROOT node is connected to the host PC. This declaration defines a two-way
link. It tells the Server/Loader that the ROOT node can both read from the host PC and
write to the host PC via FIFO or link number 0.

In some cases there may not be a two-way connection, but only a one-way connection. In
that case you can use:
FROMHOST 0

when the ROOT node can read data from the host PC over FIFO or link 0. And:
TOHOST 0

when the ROOT node can write data to the host PC over FIFO or link 0.

UMIRESET Declaration
With the HERON-BASE2, there is a possibility to reset FIFO’s. This is done by
‘associating’ a FIFO with a UMI line. You can select one or several UMI lines. FIFO’s that
are ‘associated’ with a UMI line will be reset if that UMI line is set to active. To associate a
FIFO with a UMI line, you can use the stand-alone UMIRESET statement (or use the
optional UMI keyword in a BOOTLINK or BOOTPATH statement). Example:
UMIRESET heron1 0 in 0
UMIRESET heron2 1 out 0,1

In the first UMIRESET statement, fifo 0 (in: from host to slot 1) of node ‘heron1’ is
associated with UMI line 0. In the second UMIRESET statement, fifo 1 (out: from slot 2 to
host) of node ‘heron2’ is associated with UMI lines 0 and 1. The actual reset (of heron1 fifo
0 (in) and heron2 fifo 2 (out)) will take place if UMI line 0 is made active. If UMI line 1 is
made active, only heron2 fifo 2 (out) will be reset.

Alternatively, you can use the optional keyword ‘UMI’ after a BOOTLINK / BOOTPATH
statement. Example:
 BOOTLINK HERON1 1 HERON2 0 umi 0

In this statement UMI line 0 is associated with the fifo from slot 1 (HERON1) to slot 2
(HERON2), assuming HERON1 and HERON2 definitions as used in previous sections,
and also with the fifo from slot 2 to slot 1.

UMIRESET can also be used with the host module fifos. For example:
pcif 0 host NORMAL 00000005
UMIRESET host 0 in 0

21 HUNT ENGINEERING Network File Syntax USER MANUAL

There is some degree of redundancy here, as, for example, host fifo 0 out is the same as slot
1 fifo 0 in (please refer to the HERON-BASE2 manual for fifo connections).

FIFONOBLOCK Declaration
The HERON-BASE2 supports fifo non-blocking mode. This means that the ‘sender’ of
data will continue to send data even if when the ‘receiver’ is not able to read the data (fast
enough). To select non-blocking mode, use keyword FIFONOBLOCK or FIFONOB.
Example:
 FIFONOBLOCK heron1 1 in

Alternatively, you can use the optional keyword ‘NOBLOCK’ after a BOOTLINK /
BOOTPATH statement. Example:
 BOOTLINK HERON1 1 HERON2 0 noblock

In this statement the fifo from the slot 1 (HERON1) to slot 2 (HERON2) is configured to
non-blocking mode, assuming HERON1 and HERON2 definitions as used in previous
sections, as well as the fifo from slot 2 to slot 1.

FIFONOBLOCK can also be used with the host module fifos. For example:
pcif 0 host NORMAL 00000005
FIFONOB host 0 in 0

There is some degree of redundancy here, as, for example, host fifo 0 out is the same as slot
1 fifo 0 in (please refer to the HERON-BASE2 manual for fifo connections).

Sample Network Description file for HERON-BASE2 (1)
For a HERON-BASE2 with 2 DSP nodes, the network description file could look like:
#---
Board description
BD API Board_type Board_Id Device_Id
#---
 BD API heb2a 0 0

#---
Nodes description
ND BD NDNAME NDType CC-id HERON-ID filename(s)
#---
 c6 0 HERON1 ROOT (0) 00000001 heron1.out
 c6 0 HERON2 NORMAL (1) 00000002 heron2.out
#---------------------------------------
Bootpath description.
BOOTLINK ND_NAME PORT ND_NAME PORT
#---------------------------------------
 BOOTLINK HERON1 1 HERON2 0

#--
Number of the link connected to the host system
HOSTLINK PORT
#--
 HOSTLINK 0

This network file describes a HERON-BASE2 with a board switch set to 0, to be accessed

22 HUNT ENGINEERING Network File Syntax USER MANUAL

via fifo A. There are two C6x nodes on this board (0). They are named “HERON1” and
“HERON2”. The heron-id of the first one is 1 (and as this is the first slot is must also be
the ROOT node, as only this slot has access to the host PC), the second one is 2, the
module being in slot 2 of the HERON-BASE2.

Both HERON modules are connected by a fixed HERON-BASE2 fifo link. This is
described in the BOOTLINK statement. The HERON-BASE2 has fixed fifo connections,
and if you review the HERON-BASE2 manual you can find out how the HERON-BASE2
slots are connected to each other.

Sample Network Description file for HERON-BASE2 (2)
The HERON-BASE2 can access both slots, via different fifo’s. It is possible for the Server
/ Loader to serve both nodes, as follows.
#---
Board description
BD API Board_type Board_Id Device_Id
#---
 BD API heb2a 0 0
 BD API heb2a 0 1

#---
Nodes description
ND BD NDNAME NDType CC-id HERON-ID filename(s)
#---
 c6 0 HERON1 ROOT (0) 00000001 heron1.out
 c6 1 HERON2 ROOT (1) 00000002 heron2.out

#--
Number of the link connected to the host system
HOSTLINK PORT
#--
 HOSTLINK 0

You may still declare the
 BOOTLINK HERON1 1 HERON2 0

as in the previous example, but it won’t be used. Each node will be booted via ‘it’s own’ fifo
connection with the host. Declaring a BOOTLINK or BOOTPATH may still be useful if
you want to associate the fifo’s involved with a UMI reset, or configure the fifo’s to non-
blocking mode.

Sample Network Description file for HERON-BASE2 (3)
If you use only a DSP module in slot2, note that you should use a BD API statement with
the Device ID set to 1 (and not 0), as the DSP program is to be loaded via FifoB (1).
#---
Board description
BD API Board_type Board_Id Device_Id
#---
 BD API heb2a 0 1

#---
Nodes description

23 HUNT ENGINEERING Network File Syntax USER MANUAL

ND BD NDNAME NDType CC-id HERON-ID filename(s)
#---
 c6 1 HERON2 ROOT (0) 00000002 heron2.out

24 HUNT ENGINEERING Network File Syntax USER MANUAL

The Network Description File (HEPC8)

The Network Description File is an ASCII file that lists all carrier boards, modules and their
inter-connections. (Instead of ‘modules’ it is better to talk about ‘nodes’; some modules may
have multiple processors or FPGA’s.) The following information must be present:

• A complete list of carrier boards (HEPC8)

• A complete list of the nodes (C6x) and programs to be loaded onto them.

• A complete list of the FPGA or HERONIO modules and their bit-streams.

• A complete list of boot link connections.

• Route to host.

Carrier Board Declaration
An example entry for declaring an HEPC8 is as follows:
BD API hep8a 0 0

The first item, BD, tells the Server/Loader that on this line a board is declared. The second
item, API, tells the Server/Loader that the board is to be accessed via the API. (Obviously,
the API must have been installed correctly for this to work, eventually.) The remainder is
API related: API board name ("hep8a"), board number, and device number, respectively.

Please note that the board number is the number selected by the switch on the HEPC8. It
has possible values ranging from 0 to 15. If this switch is set to, for example, 4, then your
BD declaration becomes:
BD API hep8a 4 0

C6x Processor and Program Declaration
For example, if there are two HERON modules inserted on the HEPC8 above, then the
processors and programs to boot onto them are defined as follows:
c6 0 HERON1 ROOT (1) 00000001 heron1.out
c6 0 HERON2 NORMAL (0) 00000002 heron2.out

The first item tells the Server/Loader that a 'C6x processor is declared. The second item
tells the Server/Loader via what board this processor is accessed. The number is the
number in the list of BD declarations you made. The first BD declaration is 0; the second
BD declaration is 1, and so on.

The third item is the name of the processor. You can choose any name you like. The third
item tells the Server/Loader what type of node it is: ROOT node or NORMAL node. A
ROOT node has a direct connection to the PC where the Server/Loader is running and a
NORMAL node is a processor at least 1 hop away from the Server/Loader PC. There must
be exactly one ROOT node in a network description file.

The fourth item is the Code Composer Studio ID. Code Composer Studio labels processors
as they appear along the "JTAG scan path". This is not necessarily the same as the labels we
put on them in the network description file. When you use the -g option, the Code
Composer Studio ID is used to map program file onto node.

25 HUNT ENGINEERING Network File Syntax USER MANUAL

The fifth item is the HERON module's ID. On a HEPC8, the first slot will have ID 1, the
second will have ID 2, the third ID3, and the fourth ID 4. But note that the HERON ID is
made up of the HEPC8's board number (bits 7..4) and the slot number (bits 3..0). So if the
HEPC8 board number switch is set to 4, the HERON IDs become 0x41, 0x42, 0x43 and
0x44. Thus with a HEPC8 board switch set at 0, we have:
BD API hep8a 0 0
c6 0 HERON1 ROOT (1) 00000001 heron1.out
c6 0 HERON2 NORMAL (0) 00000002 heron2.out

but when the HEPC8 board switch is set to 4, we will have:
BD API hep8a 4 0
c6 0 HERON1 ROOT (1) 0x41 heron1.out
c6 0 HERON2 NORMAL (0) 0x42 heron2.out

The last entry is the program name. This should be an executable file produced by the
Texas Instruments' C compiler for the 'C6x. With the HEPC8, 2 program files may be
declared. In case 2 are declared, the first is executed first, the second program second. You
cannot just use any file as the first file. The Server/Loader expects an executable program
that sends a specific amount of data back to the Server/Loader, and which then "resets" the
processor. Two such programs are present in \hesl\etc\c6x\eeprom. They are
eeprom62.out and eeprom67.out. The processor entries would then become:
c6 0 HERON1 ROOT (1) 00000001 eeprom62.out heron1.out
c6 0 HERON2 NORMAL (0) 00000002 eeprom67.out heron2.out

assuming that the second processor is a 'C67xx processor, and the first a 'C62xx. You
would only use eeprom62/67.out if you use the -c option of the Server/ Loader.

Please note that for the HeartConf tool, the processor is not actually loaded. However,
the parser still needs a program name there. If you use a network file exclusively for use
with HeartConf, you may write anything in place of the program name, for example “a”
or “no-file”. But if you also use the network file for use with the Server/Loader, then
you need to specify a proper filename. A network file fit for use with the Server/Loader
will certainly also work with HeartConf.. A file fit for use with HeartConf may need to
have proper program names specified before it works with the Server/Loader.

BootLink and BootPath Declaration
The Server/Loader needs to know via what FIFOs it should boot NORMAL nodes. The
following line shows you how to declare a connection between processors heron1 and
heron2 (as declared in a previous section).
BOOTLINK HERON1 2 HERON2 0

The first entry, BOOTLINK, tells the Server/Loader that this line declares a connection
between one processor and an adjacent processor. In this example, processor HERON1's
FIFO 2 is connected to processor HERON2's FIFO 0.

BOOTLINK declares a two-way connection: from HERON1 to HERON2, and from
HERON2 to HERON1. Processor HERON 1 can send data to processor HERON2 via
FIFO 2, and can also read data from processor HERON2 from FIFO 2. Processor
HERON2 can send data to HERON1 via FIFO 0, and can also read data from HERON1
from FIFO 0.

However, this may not always be the case. In case of one-way connections, you can use:

26 HUNT ENGINEERING Network File Syntax USER MANUAL

BOOTPATH HERON1 2 HERON2 0

This declares only a connection from HERON1 to HERON2. You would need two
BOOTPATH declarations to emulate one BOOTLINK declaration. For example:
BOOTPATH HERON1 2 HERON2 0
BOOTPATH HERON1 0 HERON2 2
is equal to:
BOOTLINK HERON1 2 HERON2 0

Host Path Declaration
The connection between the ROOT node and the host PC that runs the Server/Loader is
declared as follows:
HOSTLINK 0

The first entry (HOSTLINK) tells the Server/Loader that this line declares what FIFO or
link of the ROOT node is connected to the host PC. This declaration defines a two-way
link. It tells the Server/Loader that the ROOT node can both read from the host PC and
write to the host PC via FIFO or link number 0.

In some cases there may not be a two-way connection, but only a one-way connection. In
that case you can use:
FROMHOST 0

when the ROOT node can read data from the host PC over FIFO or link 0. And:
TOHOST 0

when the ROOT node can write data to the host PC over FIFO or link 0.

FPGA / HERONIO Declaration
For example, if there is an FPGA module inserted on the HEPC8 above, then the module
and program to boot onto them are defined as follows:
fpga 0 FPGA1 NORMAL 0x3 mybitstream.rbt

The first item tells the Server/Loader that a FPGA module is declared. The second item
tells the Server/Loader via what board this module is accessed. The number is the number
in the list of BD declarations you made. The first BD declaration is 0; the second BD
declaration is 1, and so on.

The third item is the name of the module. You can choose any name you like. The fourth
item tells the Server/Loader what type of node it is: always type NORMAL node.

The fifth item is the FPGA module's HERON ID. On a HEPC8, the first slot will have ID
1; the second will have ID 2, the third ID3, and the fourth ID 4. But note that the HERON
ID is made up of the HEPC8's board number (bits 7..4) and the slot number (bits 3..0). So
if the HEPC8 board number switch is set to 4, the HERON IDs become 0x41, 0x42, 0x43
and 0x44. Thus with a HEPC8 set at 0, we have:
BD API hep8a 0 0
fpga 0 FPGA1 NORMAL 0x03 mybitstream.rbt

but when the HEPC8 is set to 4, we will have:
BD API hep8a 4 0
fpga 0 FPGA1 NORMAL 0x43 mybitstream.rbt

27 HUNT ENGINEERING Network File Syntax USER MANUAL

The last entry is a bit-stream file name. This should be an rbt file produced by Xilinx tools.

Please note that for the HeartConf tool, the FPGA is not actually programmed.
However, the parser still needs a bit-stream file name there. If you use a network file
exclusively for use with HeartConf, you may write anything in place of the bit-stream
file name, like “a” or “no-rbt”. But if you also use the network file for use with the
Server/Loader, then you need to specify a proper bit-stream. A network file fit for use
with the Server/Loader will certainly also work with HeartConf.. A network file fit for
use with HeartConf may need to have proper bit-stream file names specified before it
works with the Server/Loader.

Sample Network Description file for HEPC8
For a HEPC8 with 2 nodes, 1 FPGA module, the network description file could look like:
#---
Board description
BD API Board_type Board_Id Device_Id
#---
 BD API hep8a 0 0

#---
Nodes description
ND BD NDNAME NDType CC-id HERON-ID filename(s)
#---
 c6 0 HERON1 ROOT (0) 00000001 heron1.out
 c6 0 HERON2 NORMAL (1) 00000002 heron2.out
 fpga 0 FPGA1 NORMAL 00000003 mybitstream.rbt

#---------------------------------------
Bootpath description.
BOOTLINK ND_NAME PORT ND_NAME PORT
#---------------------------------------
 BOOTLINK HERON1 2 HERON2 0

#--
Number of the link connected to the host system
HOSTLINK PORT
#--
 HOSTLINK 0

This network file describes a HEPC8 with a board switch set to 0, to be accessed via fifo A.
There are two C6x nodes on this board (0). They are named “HERON1” and “HERON2”.
The heron-id of the first one is 1 (and as this is the first slot is must also be the ROOT
node, as only this slot has access to the host PC), the second one is 2, the module being in
slot 2 of the HEPC8. There’s also an FPGA module in slot 3.

Both HERON modules are connected by a fixed HEPC8 fifo link. This is described in the
BOOTLINK statement. The HEPC8 has fixed fifo connections, and if you review the
HEPC8 manual you can find out how the HEPC8 slots are connected to each other.

Finally, we specify that the ROOT node is connected to the host via fifo A (0), by means of
the HOSTLINK statement. Note that when using HERON processor modules on the
HEPC8, routing jumpers are used to make the module boot from a certain fifo. The
selected fifo then becomes fifo 0.

28 HUNT ENGINEERING Network File Syntax USER MANUAL

The Network Description File (C4x systems)

The Network Description File is an ASCII file that lists all carrier boards, modules, and
their inter-connections. Instead of ‘modules’ it is better to talk about ‘nodes’; for example
an HETWIN module has two C4x processors, i.e. two ‘nodes’. The following information
must be present:

• A complete list of carrier boards (HEPC2E, HEPC3, HEPC4, etc.).

• A complete list of the nodes (C4x processors) and programs to be loaded onto them.

• A complete list of boot link connections.

• Route to host.

Carrier Board Declaration
An example entry for declaring an HEPC3 is as follows:
BD API hep3b 0 0

The first item, BD, tells the Server/Loader that on this line a board is declared. The second
item, API, tells the Server/Loader that the board is to be accessed via the API. (Obviously,
the API must have been installed correctly for this to work, eventually.) The remainder is
API related: API board name ("hep3b"), board number, and device number, respectively.

If you have just 1 HEPC3 in your system this will work. If you have 2 HEPC3’s in your
system, you need to define one HEPC3 as “BD API hep3b 0 0” and the other as “BD
API hep3b 1 0”. Which of the two is “0” and which of the two is “1” depends entirely
on which comes first seen from your PC’s PCI bus. If you need this information, do some
testing with the confidence checks (e.g. see what led’s light up when you do a reads
confidence check with board 0).

The board number has possible values ranging from 0 to 3 (0 to 2 for the HEPC2E).

C4x Processor and Program Declaration
For example, if there are two one processor TIM-40 modules inserted on a HEPC4 board,
then the processors and programs to boot onto them are defined as follows:
BD API HEP3B 0 0
Node descriptions.
ND BD name type CCID GBCW LBCW IACK filename(s)
 ND 0 NODE0 ROOT (1) 00000000 00000000 002ff800 idrom.out sample1.out
 ND 0 NODE1 NORMAL (0) 00000000 00000000 002ff800 idrom.out sample2.out

(N.B. The HEPC4 and HCPCI1 boards have an identical PCI interface with the HEPC3,
and typically ‘hep3b’ is used for BD API declarations even if the actual board is HEPC4 or
HCPCI1).

The BD line declares a HEPC4 board to be accessed via the API. In the ND lines, the first
item (ND itself) tells the Server/Loader that a 'C4x processor is declared. Instead of ND,
you may also use C4.

The second item tells the Server/Loader via what board this processor is accessed. The
number is the number in the list of BD declarations you made. The first BD declaration is

29 HUNT ENGINEERING Network File Syntax USER MANUAL

0; the second BD declaration is 1, and so on.

The third item is the name of the processor. You can choose any name you like.

The third item tells the Server/Loader what type of node it is: ROOT node or NORMAL
node. A ROOT node has a direct connection to the PC where the Server/Loader is running
and a NORMAL node is a processor at least 1 hop away from the Server/Loader PC. There
must be exactly one ROOT node in a network description file.

The fourth item is the Code Composer Studio ID. This is no longer used for C4x nodes,
and you can ignore this. It makes no difference whether the Code Composer Studio IDs are
there or not, for C4x nodes.

The fifth item is the GBCW (Global Bus Control Word). If the module in question is a
TIM-40, the Server/Loader will retrieve the GBCW from the TIM-40's IDROM - if you
specify 0 for the GBCW. If you use a value different than 0 for GBCW, the Server/Loader
will use that value rather than the IDROM supplied one.

The sixth item is the LBCW (Local Bus Control Word). If the module in question is a TIM-
40, the Server/Loader will retrieve the LBCW from the TIM-40's IDROM - if you specify 0
for the LBCW. If you use a value different than 0 for LBCW, the Server/Loader will use
that value rather than the IDROM supplied one.

The seventh item is the IACK. This should always be set to 2ff800.

The last entries are program names. These should be executable files produced by the Texas
Instruments' C compiler for the 'C4x. There should be 2 program files declared; you can do
with only 1 if your program does the work that the idrom.out program usually does
(sending the idrom's contents to the host). You cannot just use any file as the first file. The
Server/ Loader expects an executable program that sends a specific amount of data back to
the host (Server/Loader), and which then "resets" the processor. These programs are
present in \hesl\etc\c4x\idrom. They are idrom.out, hequad40.out,
hequad50.out and hequad60.out. For TIM-40 nodes, please use idrom.out. For
non TIM-40 nodes (HEQUAD) use one of the hequadxx.out files (xx = the
HEQUAD's processor speed, 40/50/60 Mhz).

BootLink and BootPath Declaration
For all C4x carrier boards such as HEPC3 and HEPC2, the Server/Loader needs to know
via what comports it should boot NORMAL nodes. The following line shows you how to
declare a connection between processors ‘node0’ and ‘node1’ (as declared in a previous
section).
BOOTLINK NODE0 2 NODE1 0

The first entry, BOOTLINK, tells the Server/Loader that this line declares a connection
between one processor and an adjacent processor. In this example, processor NODE0's
comport 2 is connected to processor NODE1's comport 0.

BOOTLINK declares a two-way connection: from NODE0 to NODE1, and from
NODE1 to NODE0. Processor NODE0 can send data to processor NODE1 via comport
2, and can also read data from processor NODE1 from comport 2. Processor NODE1 can
send data to NODE0 via comport 0, and can also read data from NODE0 from comport 0.

However, this may not always be the case. In case of one-way connections, you can use:
BOOTPATH NODE0 2 NODE1 0

30 HUNT ENGINEERING Network File Syntax USER MANUAL

This declares only a connection from NODE0 to NODE1. You would need two
BOOTPATH declarations to emulate one BOOTLINK declaration. For example:
BOOTPATH NODE1 2 NODE0 0
BOOTPATH NODE0 0 NODE1 2
is equal to:
BOOTLINK NODE0 2 NODE1 0

Host Path Declaration
The connection between the ROOT node and the host PC that runs the Server/Loader is
declared as follows:
HOSTLINK 0

The first entry (HOSTLINK) tells the Server/Loader that this line declares what comport
of the ROOT node is connected to the host PC. This declaration defines a two-way link. It
tells the Server/Loader that the ROOT node can both read from the host PC and write to
the host PC via comport number 0.

In some cases there may not be a two-way connection, but only a one-way connection. In
that case you can use:
FROMHOST 0

when the ROOT node can read data from the host PC over comport 0. And:
TOHOST 0

when the ROOT node can write data to the host PC over comport 0.

Sample Network Description file for HEPC3
For a HEPC3 with 2 nodes, the network description file could look like:
#---
Board description
BD API Board_type Board_Id Device_Id
#---
 BD API hep3b 0 0

#---
Nodes description
ND BD name type GBCW LBCW IACK filename(s)
#---
ND 0 NODE0 ROOT 00000000 00000000 002ff800 idrom.out root.out
ND 0 NODE1 NORMAL 00000000 00000000 002ff800 idrom.out slave.out

#-------------------------------------
Bootpath description.
BOOTLINK ND_NAME PORT ND_NAME PORT
#-------------------------------------
BOOTLINK NODE0 5 NODE1 2

#--
Number of the link connected to the host system
HOSTLINK PORT
#--
HOSTLINK 3

This network file describes a HEPC3, board number0, to be accessed via comport A. There

31 HUNT ENGINEERING Network File Syntax USER MANUAL

are two C4x nodes on this board. They are named “NODE0” and “NODE1”. There 1
ROOT node (i.e. this node is connected to the host via a comport connection), the other
node is NORMAL (i.e. this node is not connected to the host, and is reached only via other
nodes from the host). The global bus control word (GBCW) and local bus control word
(LBCW) are extracted from the IDROM using idrom.out (value 0 indicates that).

Both C4x modules are connected by a comport connection. This is described in the
BOOTLINK statement. The HEPC2E, HEPC3, HEPC4 and HCPCI1 connect comports
in certain ways, depending on module type and size. Please review the manuals of these
boards for more information how modules are or maybe inter connected via comports.

Finally, we specify that the ROOT node is connected to the host via comport 3, by means
of the HOSTLINK statement.

32 HUNT ENGINEERING Network File Syntax USER MANUAL

Network File Syntax

Network Description File Syntax

The following section covers the syntax for commands in the network description file. This
file is passed to the Server/Loader and is parsed to create a representation of the network.
During the parser stage, an unrecognised command will cause the loader to abort, reporting
the command at the point it failed. Finally, an example network description file is shown,
illustrating how to represent a 2-node network.

Describing Boards
The BD command informs the loader that a motherboard or host adapter description will
follow. Each occurrence of a board description has a reference number assigned to it. This
reference number is required by the ND node description command. The numbering is
sequential, starting from 0 for the first BD entry.

There are two forms of the BD command - one for the HUNT ENGINEERING API and
one for direct I/O. Since C6x boards have no support for direct I/O, you must use the
HUNT ENGINEERING API.

BD syntax
BD [type] [Board_type] [Board_Id] [Device_Id] <options>

Options: REMOTE

[type] Field indicating the motherboard type. For the HUNT ENGINEE-

RING API all boards are of type "API".
[Board_type] Field indicating the API code for the motherboard type:

"hep2d" For the HEPC2M rev D
"hep2e" For the HEPC2E
"hep3b" For the HEPC3 rev B, HEPC4, and HECPCI1
"hep6a" For the HEPC6 rev A
"hep8a" For the HEPC8 rev B
"hep9a" For the HEPC9 rev B

See the API manual for a list of supported boards on your platform.
[Board_Id] Field indicating which board in the system is to be used. In the case of a

HEPC9 or HEPC8 this number is the value of red switch on the carrier
board. For a full description see the API documentation. For legacy
boards, such as the HEPC3 or HEPC2E sometimes the Board Id is a
sequence number (1st board is 0, 2nd is 1, ...) and sometimes it
corresponds to the address of the board (e.g. 0 corresponds to 0x150
for the HEPC2M default address and 0x200 for the HEPC2E default
address). For a full description of the use of this field see the API
documentation.

[Device_Id] Field indicating the device, in case the board supports multiple devices.

33 HUNT ENGINEERING Network File Syntax USER MANUAL

This is a numeric code:
0 denotes FIFO A 6 denotes FIFO C 8 denotes FIFO E
1 denotes FIFO B 7 denotes FIFO D 9 denotes FIFO F

REMOTE Optional. This declares that a board should be accessed via other
boards. Typically used for boards outside a PC case. But it can also be
used if the board defined as REMOTE is actually still within the same
PC. Its PCI interface is still accessible, but all HSB and RESET will go
via another board connected to the REMOTE board. The REMOTE
board must be accessible via Inter-Board Connector module links.

For the HEPC3, HEPC2E and HEPC2M please note that boards that are purely slaves of
other boards, i.e. their reset is connected to a master board not their own host interface,
need not be declared here. The HEPC8 cannot have slave boards, so defining more than 1
HEPC8 will denote separate systems. With HEPC9 systems all boards in the system should
be defined.

BDCONN / BDLINK / BDPATH syntax (HEART boards only)
Boards (e.g. two HEPC9’s) that are connected by means of two inter-board connectors (e.g.
EM2) can define the connection with a BDCONN statement. This defines a duplex
connection between the two inter-board modules (i.e. the boards).
BDCONN [fromnode][fromchan][tonode][tochan] <options>

Options: NOHSB, NORESET, ONEWAY

[fromnode] Name of an Inter-Board Connector module, such as an EM2 or EM1

module. The module must have been defined earlier in the network file.
[fromchan] Integer value indicating the channel that is used by the Inter-Board

Connector module ‘fromnode’ connect to the other board. For an EM1
this is always 0, for an EM2 you have a choice between 0..5.

[tonode] Name of an Inter-Board Connector module, such as an EM2 or EM1
module. The module must have been defined earlier in the network file.

[tochan] Integer value indicating the channel that is used by the Inter-Board
Connector module ‘tonode’ to connect to the other board. For an EM1
this is always 0, for an EM2 you have a choice between 0..5.

NOHSB Optional. In HEART systems with more than one board, and whose
boards are connected via Inter-Board Connector modules, and at least
one board is a ‘remote’ board, HSB and RESET connections are
propagated over Inter-Board Connector channels. This so that the
remote board can be accessed by HSB and so that it can be reset (via
another board). However, if there are multiple channel paths via which a
‘remote’ board can be reached, the keyword NOHSB must be used to
define links that must not propagate HSB until just one link is left
propagating HSB to the ‘remote’ board.

NORESET Optional. In HEART systems with more than one board, and whose
boards are connected via Inter-Board Connector modules, and at least
one board is a ‘remote’ board, HSB and RESET connections are
propagated over Inter-Board Connector channels. This so that the
remote board can be accessed by HSB and so that it can be reset (via

34 HUNT ENGINEERING Network File Syntax USER MANUAL

another board). However, if there are multiple channel paths via which a
‘remote’ board can be reached, the keyword NORESET must be used
to define links that must not propagate RESET until just one link is left
propagating RESET to the ‘remote’ board.

ONEWAY Optional. Declares that this link between Inter-Board Modules is
simplex (one way) only.

As an alternative, you can also declare links between boards directly. However, it assumes
that Inter-Board Connector modules are defined later in the network file. And the actual
connection is still assumed to be a link between to Inter-Board Connector modules.

To declare links between boards directly, use a BDLINK or BDPATH statement. BDLINK
and BDPATH define a board-to-board connection, assuming that inter-board modules are
define later in the network file. BDLINK defines a one-way connection, BDPATH a
duplex connection between the two carrier boards.
BDLINK [frombd][fromfifo][tobd][tofifo] <options>
BDPATH [frombd][fromfifo][tobd][tofifo] <options>

Options: NOHSB, NORESET

[frombd] Integer value indicating from what board the connection starts. The

integer value is one of the boards defined with a BD statement earlier.
The first BD (API) statement defines board #0, and so on.

[fromfifo] Integer value indicating the fifo number that is (to be) used by the inter-
board module on ‘frombd’ to connect to the other board.

[tobd] Integer value indicating at what board the connection ends. The integer
value is one of the boards defined with a BD statement earlier. The first
BD statement defines board #0, and so on.

[tofifo] Integer value indicating the fifo number that is (to be) used by the inter-
board module on ‘tobd’ to connect to the other board.

NOHSB Optional. In HEART systems with more than one board, and whose
boards are connected via Inter-Board Connector modules, and at least
one board is a ‘remote’ board, HSB and RESET connections are
propagated over Inter-Board Connector channels. This so that the
remote board can be accessed by HSB and so that it can be reset (via
another board). However, if there are multiple channel paths via which a
‘remote’ board can be reached, the keyword NOHSB must be used to
define links that must not propagate HSB until just one link is left
propagating HSB to the ‘remote’ board.

NORESET Optional. In HEART systems with more than one board, and whose
boards are connected via Inter-Board Connector modules, and at least
one board is a ‘remote’ board, HSB and RESET connections are
propagated over Inter-Board Connector channels. This so that the
remote board can be accessed by HSB and so that it can be reset (via
another board). However, if there are multiple channel paths via which a
‘remote’ board can be reached, the keyword NORESET must be used
to define links that must not propagate RESET until just one link is left
propagating RESET to the ‘remote’ board.

35 HUNT ENGINEERING Network File Syntax USER MANUAL

C6 nodes syntax (HEPC8, HEART, and HERON-BASE2 boards only)
The node declaration informs the loader that a node description will follow. A 'C6x
processor node can be declared with:
C6 [host_bd][nd_name][nd_type][(cc-id)][heron_id][filenames..]

Instead of "C6" you may also use "c62", "c62x", "c6201", "c67", "c67x", and “c6701". In
the current version of the Server/Loader there are no differences between these entries.

[host_bd] Field indicating the number of the motherboard controlling this

processor. (note that if a module is on a slave board, this field should
contain the reference to its master.)

[nd_name] Character string uniquely identifying the processor.
[nd_type] Field indicating whether this processor is the root node or a slave node.

The nd_type must be one of the following two values.

"ROOT" indicating that this is the root node.
"NORMAL" indicating that this is a regular network node.

The value ROOT can only be applied to the first node, or `root' node in
the network.

[(cc-id)] Optional. Denotes a Code Composer Studio processor ID. Code
Composer Studio labels processors as it finds them on the JTAG scan
path. This is not necessarily the same as how we see the system as
expressed in the network file.

[heron-id] The ID of the HERON module. This ID has two parts: bits 7..4 that
denote the board number (hex 0 to f) and bits 3..0 that denote the slot
number (1, 2, 3 or 4 on a HEPC8). The board number is set by the red
switch on the HEPC8. (This is not necessarily 0!)

[Filenames] The names of the file(s) to load onto this node.1

C4 nodes syntax (C4x carrier boards only)
The ND command informs the loader that a node description will follow.
ND [host_bd][nd_name][nd_type][GBCW][LBCW][IACK][filenames..]

Instead of "ND" you may also use "c4", "c4x", "c40”, or "c44". In the current version of
the Server/Loader there are no differences between these entries.

1 If two filenames are provided the first is taken as the node-specific initialisation routine, and the second is
taken as the target program for the node. For HEART boards, such as HEPC9, only 1 filename may be
specified.

36 HUNT ENGINEERING Network File Syntax USER MANUAL

ND Keyword indicating the description of a 'C4x DSP node.
[host_bd] Field indicating the number of the motherboard controlling this

processor. (note that if a module is on a slave board, this field should
contain the reference to its master.)

[nd_name] Character string uniquely identifying the processor.
[nd_type] Field indicating whether this processor is the root node or a slave node.

The nd_type must be one of the following two values.
ROOT Keyword indicating that this is the root node.
NORMAL Keyword indicating that this is a regular network node.
The value ROOT can only be applied to the first node, or `root' node in
the network.

[GBCW] Global Bus Control Word for this DSP node.2
[LBCW] Local bus control word for this DSP node.3

[IACK] Iack address for this DSP node.4
[Filenames] The names of the file(s) to load onto this C4x.5

FPGA nodes syntax (HEPC8, HEART, and HERON-BASE2 boards only)
The FPGA declaration informs the loader that a FPGA or HERONIO description will
follow. An FPGA node can be declared with:
FPGA [host_bd][nd_name][nd_type][heron_id][filename]

Instead of "FPGA" you may also use "HERONIO". In the current version of the
Server/Loader there are no differences between these entries. It denotes any HERON
module that has a programmable FPGA on board that can be downloaded via HSB.
[host_bd] Field indicating the number of the motherboard controlling this

processor. (Note that if a module is on a slave board, this field should
contain the reference to its master, ie the carrier board via which PCI
interface you wish to download the FPGA’s bootstream.)

[nd_name] Character string uniquely identifying the module.
[nd_type] Field indicating whether this module is the root node or a slave node.

The nd_type must be one of the following two values.

"ROOT" indicating that this is the root node.
"NORMAL" indicating that this is a regular network node.

The value ROOT can only be applied to the first node, or `root' node in

2 These values are ignored if two filenames are provided
3 These values are ignored if two filenames are provided
4 Note that the IACK value is required in both cases
5 If two filenames are provided the first is taken as the node-specific initialisation routine, and the second is
taken as the target program for the node.

37 HUNT ENGINEERING Network File Syntax USER MANUAL

the network.
[heron-id] The ID of the HERON module. This ID has two parts: bits 7..4 that

denote the board number (hex 0 to f) and bits 3..0 that denote the slot
number (1, 2, 3 or 4 on a HEPC8 or 9). The board number is set by the
red switch on the HEPC8 or 9. (This is not necessarily 0!)

[Filename] The names of the bit stream to load onto this node.

GDIO nodes syntax (HEART boards only)
The GDIO statement defines a HEGDx module. A GDIO module can be declared with:
GDIO [host_bd][nd_name][nd_type][heron_id]

You can use this description to describe any GDIO module, such as the HEGD1, HEGD2,
HEGD3 and so on. The reason why you might want to describe a GDIO module is to give
you a ‘named handle’ that you can use later, in a HEART statement, to define a HEART
FIFO connection between a GDIO module and another module. For non-HEART boards
there’s no reason to use this statement: you can but the Server/ Loader won’t use the
information for anything so you may just as well omit it.
[host_bd] Field indicating the number of the motherboard controlling this

processor. (note that if a module is on a slave board, this field should
contain the reference to its master.)

[nd_name] Character string uniquely identifying the processor.
[nd_type] Field indicating whether this processor is the root node or a slave node.

The nd_type must be one of the following two values.

"ROOT" indicating that this is the root node.
"NORMAL" indicating that this is a regular network node.

The value ROOT can only be applied to the first node, or `root' node in
the network.

[heron-id] The ID of the HERON module. This ID has two parts: bits 7..4 that
denote the board number (hex 0 to f) and bits 3..0 that denote the slot
number (1, 2, 3 or 4 on a HEPC8). The board number is set by the red
switch on the HEPC8. (This is not necessarily 0!)

PCIF (Host Interface) nodes syntax (HEART and HERON-BASE2 boards
only)
The PCIF declaration informs the loader that a host interface description will follow. A
host interface can be declared with:
PCIF [host_bd][nd_name][nd_type][heron_id]

You can use this description to describe a host interface, such as the PCI interface on a
HEPC9 board. The reason why you might want to describe a PCIF module is to give you a
‘named handle’ that you can use later, in a HEART statement, to define a HEART FIFO
connection between the PCI interface and a module. For non-HEART boards there’s no
reason to use this statement: you can, but the Server/ Loader won’t use the information for
anything so you may just as well omit it.

38 HUNT ENGINEERING Network File Syntax USER MANUAL

[host_bd] Field indicating the number of the motherboard controlling this
processor. (note that if a module is on a slave board, this field should
contain the reference to its master.)

[nd_name] Character string uniquely identifying the processor.
[nd_type] Field indicating whether this processor is the root node or a slave node.

The nd_type must be one of the following two values.

"ROOT" indicating that this is the root node.
"NORMAL" indicating that this is a regular network node.

The value ROOT can only be applied to the first node, or `root' node in
the network.

[heron-id] The ID of the HERON module. This ID has two parts: bits 7..4 that
denote the board number (hex 0 to f) and bits 3..0 that denote the hsb
number (5 on a HEPC9). The board number is defined by the red
switch on the HEPC9. (This is not necessarily 0!)

EM2/EM1/EM1C nodes syntax (HEART boards only)
The EM2/EM1/EM1C declaration informs the loader that an Inter-Board Connector
module description will follow.
EM2 [host_bd][nd_name][nd_type][heron_id]
EM1 [host_bd][nd_name][nd_type][heron_id]
EM1C [host_bd][nd_name][nd_type][heron_id]

The reason why you might want to describe a Inter-Board Connector module is to give you
a ‘named handle’ that you can use in a BDCONN statement to declare connections (links)
between 2 Inter-Board Connector modules. Or it can be used in a HEART statement, to
define a HEART FIFO connection between an Inter-Board Connector module and another
module. For non-HEART boards there’s no reason to use this statement: you can but the
Server/ Loader won’t use the information for anything so you may just as well omit it.
[host_bd] Field indicating the number of the motherboard controlling this module.

(note that if a module is on a slave board, this field should contain the
reference to its master.)

[nd_name] Character string uniquely identifying the processor.
[nd_type] Field indicating whether this processor is the root node or a slave node.

The nd_type must be one of the following two values.

"ROOT" indicating that this is the root node.
"NORMAL" indicating that this is a regular network node.

The value ROOT can only be applied to the first node, or `root' node in
the network.

[heron-id] The ID of the HERON module. This ID has two parts: bits 7..4 that
denote the board number (hex 0 to f) and bits 3..0 that denote the hsb
number (6 on a HEPC9). The board number is set by the red switch on
the HEPC9. (This is not necessarily 0!)

BOOTLINK / BOOTPATH syntax (C4x boards, HEPC8, and HERON-BASE2

39 HUNT ENGINEERING Network File Syntax USER MANUAL

only)
The BOOTLINK declaration informs the loader that a boot path description will follow.
For every node in the network other than the root node, one BOOTLINK entry is required.
In the case of the root node, the HOSTLINK command must be used. For HEART based
boards, such as the HEPC9, no BOOTLINK or BOOTPATH statements are used though.
This is because the Server/Loader can automatically create temporarily HEART FIFO links
over which to boot processors or FPGA modules.
BOOTLINK [parent_nd][parent_lnk][target_nd][target_lnk]

Instead of BOOTLINK you may also use the keyword BOOT.
[parent_nd] The name of the processor node from which to boot the target node.
[parent_lnk] Parent's node fifo through which the parent will boot the target node.
[target_node] The name of the target node.
[target_lnk] Target node's fifo through which the target node will be booted.

The BOOTPATH declaration informs the loader that a boot path description will follow. It
is different from the BOOTLINK command in that the BOOTPATH defines a one-way path
from the "parent" to the "target". The BOOTLINK declaration defines a two-way path: from
"parent" to "target", and from "target" to "parent".
BOOTPATH [parent_nd][parent_lnk][target_nd][target_lnk]

Instead of BOOTPATH you may also use the keyword PATH.
[parent_nd] The name of the processor node from which to boot the target node.
[parent_lnk] Parent node's FIFO number through which the parent will boot the

target node.
[target_node] The name of the target node.
[target_lnk] Target node's FIFO or comport through which the target node will be

booted.

HEART syntax (HEART boards only)
A HEART statement tells the Server/Loader to create a point-to-point FIFO connection
between two modules. It thus doesn’t describe a situation, is tells the Server/Loader to
perform an action. The connection created is one way.
HEART [fromnode][fromfifo][tonode][tofifo][timeslots] <options>

Options: NOSERVE, UMI 0|1|2|3

[fromnode] The name of the node where the FIFO connection starts. This node
must have been defined earlier with a C6, FPGA/HERONIO, GDIO,
PCIF or IBC definition.

[fromfifo] The number of the fifo (0..5) on fromnode from where the FIFO
connection starts.

[tonode] The name of the node where the FIFO connection ends. This node
must have been defined earlier with a C6, FPGA/HERONIO, GDIO,

40 HUNT ENGINEERING Network File Syntax USER MANUAL

PCIF or IBC definition.
[tofifo] The number of the fifo (0..5) on tonode from where the FIFO

connection ends.
[timeslots] The number of timeslots that must be used for this connection (1..6).

It is also possible to specify precisely what timeslots to use: “t=0,3”
tells the Server/Loader to use timeslots 0 and 3 (of 0..5). You can also
use “v=0x81” to do the same. The “v=” tells the Server/Loader that
you wish to use a 6-bit mask to specify what timeslots should be used.
If no “t=” or “v=” specifier is used, the number specified is
interpreted as the number of timeslots you wish to use. The Server/
Loader will allocate automatically proper timeslots. This is the usual
way of using HEART statements.

NOSERVE The Server/Loader will check the network file to find all processor
nodes that are connected to a host interface. This connection may be a
direct HEART connection between a processor node and a host
interface, or a connection via Inter-Board Connectors. The Server will
then serve all processor nodes that have a duplex connection to the
host. However, frequently you want a processor – host connection for
yourself and not have the Server use it. For such situations you can use
the keyword NOSERVE to indicate that the Server should ignore this
connection and not serve it.

UMI 0|1|2|3 HEART boards have a reset FIFO feature. A HEART FIFO can be
reset via UMI lines. For this to work, you have to specify what UMI
line a FIFO is associated with. In the case that you want to be able to
reset all HEART FIFO’s related to a HEART connection, use the
UMI keyword, and then specify the UMI line. You can specify more
than 1 UMI line, separated by commas. The actual reset is then done
by twiggling a UMI line. You can also associate single FIFO’s with a
UMI line by using a UMIRESET statement.

BDCAST syntax (HEART boards only)
A BDCAST statement tells the Server/Loader to create a one way FIFO connection from a
module onto the HEART ring. The statement defines a module that ‘broadcasts’ data onto
the timeslot you specify in this statement. Modules can ‘listen’ to a ‘broadcast’ by reading
from the ring at that timeslot. A ‘listen’ connection can be created with the LISTEN
statement. It thus doesn’t describe a situation, is tells the Server/Loader to perform an
action.
BDCAST [broadcast][node][outfifo][timeslots] <options>

Options: UMI 0|1|2|3

[broadcast] Give the broadcast a name. This allows you to later ‘name’ the

broadcast to listen to in a LISTEN statement.
[node] The name of the node that will broadcast. This node must have been

defined earlier with a C6, FPGA/HERONIO, GDIO, PCIF or IBC
definition.

41 HUNT ENGINEERING Network File Syntax USER MANUAL

[outfifo] The number of the fifo (0..5) on node to broadcast with.
[timeslots] The number of timeslots that must be used for this connection (1..6).

It is also possible to specify precisely what timeslots to use: “t=0,3”
tells the Server/Loader to use timeslots 0 and 3 (of 0..5). You can also
use “v=0x81” to do the same. The “v=” tells the Server/Loader that
you wish to use a 6-bit mask to specify what timeslots should be used.
If no “t=” or “v=” specifier is used, the number specified is
interpreted as the number of timeslots you wish to use. The Server/
Loader will allocate automatically proper timeslots. This is the usual
way of using BDCAST statements.

UMI 0|1|2|3 HEART boards have a reset FIFO feature. A HEART FIFO can be
reset via UMI lines. For this to work, you have to specify what UMI
line a FIFO is associated with. In the case that you want to be able to
reset all HEART FIFO’s related to a HEART connection, use the
UMI keyword, and then specify the UMI line. You can specify more
than 1 UMI line, separated by commas. The actual reset is then done
by twiggling a UMI line. You can also associate single FIFO’s with a
UMI line by using a UMIRESET statement.

LISTEN syntax (HEART boards only)
A LISTEN statement tells the Server/Loader to create a one way FIFO connection from
the HEART ring to a module. The statement defines a module that ‘listens’ to the time-slot
you specify in this statement. A modules can ‘broadcast’ by sending data to the ring at that
timeslot. A ‘broadcast’ connection can be created with the BDCAST statement. A LISTEN
statement thus doesn’t describe a situation, is tells the Server/Loader to perform an action.
LISTEN [broadcast][node][infifo][timeslots] <options>

Options: UMI 0|1|2|3

[broadcast] The broadcast to listen to. The broadcast must have been defined in

an earlier BDCAST statement.
[node] The name of the node that will listen. This node must have been

defined earlier with a C6, FPGA/HERONIO, GDIO, PCIF or IBC
definition.

[infifo] The number of the fifo (0..5) on node to listen with.
[timeslots] The number of timeslots that must be used for this connection (1..6).

It is also possible to specify precisely what timeslots to use: “t=0,3”
tells the Server/Loader to use timeslots 0 and 3 (of 0..5). You can also
use “v=0x81” to do the same. The “v=” tells the Server/Loader that
you wish to use a 6-bit mask to specify what timeslots should be used.
If no “t=” or “v=” specifier is used, the number specified is
interpreted as the number of timeslots you wish to use. The Server/
Loader will allocate automatically proper timeslots. This is the usual
way of using BDCAST statements.

UMI 0|1|2|3 HEART boards have a reset FIFO feature. A HEART FIFO can be
reset via UMI lines. For this to work, you have to specify what UMI
line a FIFO is associated with. In the case that you want to be able to

42 HUNT ENGINEERING Network File Syntax USER MANUAL

reset all HEART FIFO’s related to a HEART connection, use the
UMI keyword, and then specify the UMI line. You can specify more
than 1 UMI line, separated by commas. The actual reset is then done
by twiggling a UMI line. You can also associate single FIFO’s with a
UMI line by using a UMIRESET statement.

BOOTSLOT syntax (HEART boards only)
The BOOTSLOT declaration informs the loader via what HEART timeslot to boot the
defined module. By default, the Server/Loader will use the timeslot defined by this
statement to boot the defined module. The Server/Loader will program HEART to create
the desired FIFO connection. It is not necessary to set boot jumpers. In fact, any boot
jumper setting will be ignored. You may even omit a BOOTSLOT statement at all. If
there’s no BOOTSLOT statement for a module, the Server/Loader assumes timeslot 0. As
before, the Server/Loader will program HEART to create the desired FIFO connecti-on
using timeslot 0. Thus, the only influence of a BOOTSLOT statement is to define over
what timeslot a module is booted.

The behaviour is different with the ‘-j’ option. If this is used, then the Server/Loader will
not create any HEART FIFO connection. Instead, it assumes that you have set boot
jumpers on the modules to create on-reset HEART FIFO connections. In this case you
must use BOOTSLOT statements and the timeslot defined must match the boot jumpers
on the module.
BOOTSLOT [module][timeslot]

[module] The name of the node to boot.
[timeslot] Timeslot over which to boot ‘module’.

HOSTLINK syntax
The HOSTLINK declaration informs the loader that the host link will follow. The host link
command should appear once only, describing the FIFO through which the root node is
connected to the host.
HOSTLINK [fifo_no]
[fifo_no] Root node's fifo connected to the host system.

The FROMHOST declaration informs the loader there is a one-way connection between
the host PC and the ROOT node in the DSP network. The ROOT DSP can read data sent
by the host PC over this FIFO, but cannot write over this FIFO.
FROMHOST [fifo_no]
[fifo_no] Root node's FIFO connected to the host system.

The TOHOST declaration informs the loader there is a one-way connection between the
ROOT node in the DSP network and the host PC. The ROOT DSP can write data to the
host PC over this FIFO, but cannot read from this FIFO.
TOHOST [fifo_no]
[fifo_no] Root node's fifo connected to the host system.

43 HUNT ENGINEERING Network File Syntax USER MANUAL

UMIRESET syntax (HEART and HERON-BASE2 boards only)
HEART offers the possibility of being able to reset a (HEART) FIFO. This is done by
‘associating’ a FIFO with one or more UMI lines. The actual FIFO reset occurs each time
the UMI line is made ‘active’. Only FIFO’s ‘associated’ with that UMI line will be reset.
There are two ways you can ‘associate’ a FIFO with a UMI line: by using the optional UMI
keyword in a HEART statement (see earlier), or using the UMIRESET statement. In the
latter case, individual FIFO’s are ‘associated’ with a UMI line.
UMIRESET [node][fifo][in|out][0|1|2|3]

[node] The node on which there’s a FIFO you want to ‘associate’ a UMI line

with.
[fifo] The FIFO you want to ‘associate’ a UMI line with.
[in|out] Specify if the FIFO is an incoming FIFO (i.e. from HEART to the

node) or an outgoing FIFO (i.e. from the node to HEART).
[0|1|2|3] The UMI line you want to ‘associate’ the FIFO with. There are 4 UMI

lines and you may select more than 1, separated by commas.

FIFONOBLOCK syntax (HERON-BASE2 boards only)
The HERON-BASE2 offers the possibility to configure a fifo in non-blocking mode.
FIFONOBLOCK [node][fifo][in|out]
FIFONOB [node][fifo][in|out]

[node] The node on which there’s a FIFO you want to configure to non-

blocking mode.
[fifo] The FIFO you want to configure.
[in|out] Specify if the FIFO is an incoming FIFO or an outgoing FIFO.

Example Network Description Files

Hepc9
For one HEPC9 with one DSP, one FPGA module, a GDIO module, and a HERONIO
module, the network description file could look like:
#---
Board description
BD API Board_type Board_Id Device_Id
#---
 BD API hep9a 0 0

#---
Nodes description
ND BD NDNAME NDType CC-id HERON-ID filename(s)
#---
 c6 0 HERON1 ROOT (0) 00000001 heron1.out
 heronio 0 heronio1 NORMAL 00000002 heronio1.rbt
 fpga 0 FPGA1 NORMAL 00000003 fpga1.rbt
 gdio 0 hegd2 NORMAL 00000004

44 HUNT ENGINEERING Network File Syntax USER MANUAL

 pcif 0 host NORMAL 00000005

#---------------------------------------
BOOTSLOT ND_NAME TIMESLOT
#---------------------------------------
 BOOTSLOT HERON1 2

#--
Number of the link connected to the host system
HOSTLINK PORT
#--
 HOSTLINK 0

#---
HEART from:slot fifo to:module fifo timeslots
#---
 HEART HERON1 0 host 3 1
 HEART host 3 HERON1 0 1
 HEART HERON1 1 heronio1 1 1
 HEART heronio1 1 HERON1 1 1
 HEART hegd2 5 FPGA1 4 1
 HEART FPGA1 3 HERON1 2 1

This will tell the Server/Loader to create a duplex connection between the DSP module
and the host interface. A PC program can now communicate with the DSP by reading/
writing FIFO 3. The DSP can communicate with the PC by reading/writing FIFO 0.

The third and fourth statement will tell the Server/Loader to create a duplex connection
between the DSP in slot 1 and the HERONIO in slot 2. The DSP can communicate with
the HERONIO by reading/writing FIFO 1. The HERONIO can communicate with the
DSP by reading writing FIFO 1.

The fifth statement asks the Server/Loader to create a one-way connection from the GDIO
in slot 4 to the FPGA in slot 3. The GDIO outputs on FIFO 5, and the FPGA reads the
GDIO data in at FIFO 4.

The sixth statement asks the Server/Loader to create a one-way connection from the
FPGA in slot 3 to the DSP in slot 1. The DSP can read FPGA data from FIFO 2, but
cannot write data back to the FPGA (in this example). The FPGA outputs its data onto
FIFO number 3.

So in this example we have a GDIO (5) -> (4) FPGA (3) -> (2) DSP ‘pipeline’. The DSP
has duplex communications with the HERONIO over FIFO 1, and with the PC over FIFO
0. The PC can communicate then with DSP over host FIFO 3.

Hepc8
Example for a HEPC8 with 2 nodes, 1 FPGA module.
#---
Board description
BD API Board_type Board_Id Device_Id
#---
 BD API hep8a 0 0

#---
Nodes description
ND BD NDNAME NDType CC-id HERON-ID filename(s)
#---

45 HUNT ENGINEERING Network File Syntax USER MANUAL

 c6 0 HERON1 ROOT (0) 00000001 heron1.out
 c6 0 HERON2 NORMAL (1) 00000002 heron2.out
 fpga 0 FPGA1 NORMAL 00000003 mybitstream.rbt

#---------------------------------------
Bootpath description.
BOOTLINK ND_NAME PORT ND_NAME PORT
#---------------------------------------
 BOOTLINK HERON1 2 HERON2 0

#--
Number of the link connected to the host system
HOSTLINK PORT
#--
 HOSTLINK 0

The above network description describes a DSP network that has two C6x processors, int
slot 1 and 2, and a FPGA module in slot 3, on the same HEPC8. The HEPC8 motherboard
is to be accessed using the Hunt Engineering API as board number 0, device 0. The C6x in
slot 1 of the HEPC8 is connected to the host via FIFO 0. And it is connected via FIFO 2
with FIFO 0 of the C6x in slot 2 of the HEPC8. (Note that this FIFO mapping may be
different in your case, since FIFOs may be selected using jumpers on the HERON
module).

Hepc3
Server/Loader. Example Network Description File.
Lines can be commented out with a `#`.

Board description.
BD API board board number device number
 BD API hep3b 0 0

Nodes description
BD NAME Type CCid GBCW LBCW IACK Program(s)
ND 0 NODE0 ROOT (2) 00000000 00000000 002ff800 idrom.out root.out
ND 0 NODE1 NORMAL (1) 00000000 00000000 002ff800 idrom.out slave1.out
ND 0 NODE2 NORMAL (0) 00000000 00000000 002ff800 idrom.out slave2.out

Bootpath description.
BOOTLINK ND_NAME PORT ND_NAME PORT
 BOOTLINK NODE0 5 NODE1 2
 BOOTLINK NODE1 5 NODE2 2

Number of the link connected to the host system
HOSTLINK PORT
 HOSTLINK 3

The above network description describes a DSP network that has 3 C4x processors, all
situated on a HEPC4, HEPC3 or HECPCI1. The motherboard is to be accessed using the
Hunt Engineering API as board number 0, device 0. The C1x in slot 1 is connected to the
host via comport 3. And it is connected via comport 5 to comport 2 of the C4x in slot 2. In
its turn, the second C4x is connected to a third C4x via its comport 5 to the third C4x's
comport 2. (Note that this comport mapping may be different in your case.)

46 HUNT ENGINEERING Network File Syntax USER MANUAL

Feature Spotlight

HEART fifo reset using UMI

HEART has a feature that allows you to reset a HEART fifo. This is done by attaching a
UMI line to 1 or more HEART fifo’s. By setting the UMI line to active, the HEART fifo’s
attached to that line are then reset.

The network file specification allows to ways two define how a UMI line is to be attached
to a fifo. First, there’s a specific keyword (UMIRESET) that specifically selects a FIFO to
be attached to a UMI line: -

UMIRESET node fifo in umi

for a HEART to node fifo, and

UMIRESET node fifo out umi

for a node to HEART fifo. Here ‘node’ is the name of a node, fifo is the fifo number (0..5),
in or out are keywords, and umi is the umi line number (0..3). However, you may want to be
able to reset all fifo’s in a connection between two nodes. In that case, it is easier / simpler
to use the optional UMI keyword in a HEART, MCAST, BDCAST or LISTEN statement.
For example: -

HEART nodea 2 nodeb 4 1 umi 2

defines a HEART connection between ‘nodea’ fifo 2 and ‘nodeb’ fifo 4, 1 timeslot, and
defines all fifo’s involved to be attached to UMI line 2.

Finally, note that the actual fifo reset is done by setting the UMI line to active. In the
network file you only define (associate) certain fifo’s with certain UMI lines.

Using Inter-Board Connectors

Some HEART boards, such as the HEPC9, can accept Inter-Board Connectors, such as the
EM2, EM1 and EM1C. Using Inter-Board Connectors boards can be connected. HSB and
reset may be propagated over board-to-board links, allowing HSB exchange between nodes
on different boards and allowing a reset on 1 board to reset all connected boards as well.
Using HEART statements it is also possible to wire node-to-node fifo connections over
board-to-board links. This can be done explicitly, for example:
 BD API hep9a 0 0
 BD API hep9a 1 0

 c6 0 nodea ROOT (1) 0x01 module1.out
 em2 0 em2a normal 0x06
 c6 1 nodeb ROOT (0) 0x01 module2.out
 em2 1 em2b normal 0x06

 heart nodea 0 em2a 1 1
 heart em2b 1 nodeb 0 1

This describes a connection over an EM2 link (channel 1 (em2a) to channel 1 (em2b)) from
nodea fifo 0 to nodeb fifo 0, using 1 timeslot.

47 HUNT ENGINEERING Network File Syntax USER MANUAL

However, you can also declare board-to-board connections using BDCONN, and in that
case you can connect any nodes. HeartConf or Server/Loader will then automatically route
via Inter-Board Connectors, using the information provided in BDCONN statements. The
same example as above would become: -
 BD API hep9a 0 0
 BD API hep9a 1 0

 c6 0 nodea ROOT (1) 0x01 module1.out
 em2 0 em2a normal 0x06
 c6 1 nodeb ROOT (0) 0x01 module2.out
 em2 1 em2b normal 0x06

 BDCONN em2a 1 em2b 1

 heart nodea 0 nodeb 0 1

Instead of a BDCONN you could also use a BDLINK statement. This statement declares
board-to-board connections without using Inter-Board Connectors explicitly named. It uses
two board indices instead. For example, with the above statement one could replace the
BDCONN with an equivalent: -
 BDLINK 0 1 1 1

thus, essentially, the em2a node is replaced by the board index of the board it’s on, and the
em2b node is replaced by the board index of the board the em2b node is on. Why would
you use one form above the other? No reason really, just choose what fits you best. In both
cases you must have defined Inter-Board Connectors; with a BDLINK statement the Server
/Loader or HeartConf will trace back what Inter-Board Connector is used on that board.

Note that 1 board-to-board connection can carry only one node-to-node connection. Thus,
if you have 2 node-to-node connections where the connections will have to pass Inter-
Board Connectors, you need 1 link per node-to-node connection. For example:
 BD API hep9a 0 0
 BD API hep9a 1 0

 c6 0 nodea ROOT (3) 0x01 module1.out
 c6 0 nodeb normal (2) 0x02 module1.out
 em2 0 em2a normal 0x06
 c6 1 nodec ROOT (0) 0x01 module2.out
 c6 1 noded normal (0) 0x02 module2.out
 em2 1 em2b normal 0x06

 BDCONN em2a 1 em2b 1

 heart nodea 0 nodec 0 1
 heart nodeb 2 noded 3 1

In this example, HeartConf or Server/Loader will return an error indicating it can’t route 2
connections over 1 board-to-board connection. In this example, you would need 2 channel
connections between the two boards: -
 BDCONN em2a 1 em2b 1
 BDCONN em2a 2 em2b 2

I.e. we have specified there are now two cables between em2a and em2b (channel 1 (em2a)
to channel 1 (em2b) and channel 2(em2a) to channel 2(em2b)).

48 HUNT ENGINEERING Network File Syntax USER MANUAL

If you need more bandwidth between two nodes, you can increase the number of timeslots.
For example, continuing on the earlier examples: -
 heart nodea 0 nodec 0 2

However, note that the maximum bandwidth between two Inter-Board Connectors may be
less than the number of timeslots you specified. For example, the maximum bandwidth of
an EM2 to EM2 connection per cable is 125 Mb/sec, whereas two timeslots on HEART
would give you 132 Mb/sec.

Server links

Server links are only used by the Server/Loader, not by HeartConf. The Server part of the
Server/Loader must try to find out what nodes need or want to be served. With non-
HEART boards, such as the HEPC8 or HEPC3, this was easy. With such boards only one
node, the ROOT node is connected to the host; so finding the ROOT node also tells you
what node needs to be served. With HEART boards, however, all nodes can be connected
to the host.

The server will search the HEART statements, and will detect all nodes that have a duplex
connection with a host. This includes node-to-host connections that go via Inter-Board
Connectors. It is thus possible to serve nodes on remote boards.

If there is more than 1 duplex node-to-host connection, the server chooses one connection
to serve. This is effectively a random choice. In case that you wish to use the Server
together with an API program that accesses the same host interface, you may want to be
able to create a duplex connection of which you can be sure it isn’t used by the Server. That
can be done by using the optional NOSERVE keyword. For example:
 heart nodea 0 host 0 1
 heart host 0 nodea 0 1
 heart nodea 1 host 1 1 NOSERVE
 heart host 1 nodea 1 1 NOSERVE

This will force the Server/Loader to use fifo a to serve nodea, while ensuring that fifo b is
free for use for nodea-to-host communications for your own API application. Of course, if
you don’t use the Server all of this doesn’t matter.

49 HUNT ENGINEERING Network File Syntax USER MANUAL

Technical Support

Technical support for HUNT ENGINEERING products should first be obtained from the
comprehensive Support section www.hunteng.co.uk/support/index.htm on the HUNT
ENGINEERING web site. This includes FAQs, latest product, software and
documentation updates etc. Or contact your local supplier - if you are unsure of details
please refer to www.hunteng.co.uk for the list of current re-sellers.

HUNT ENGINEERING technical support can be contacted by emailing
support@hunteng.demon.co.uk, calling the direct support telephone number +44 (0)1278
760775, or by calling the general number +44 (0)1278 760188 and choosing the technical
support option.
If you are in North America, South America or Canada, contact our strategic partner
Traquair Data Systems at www.traquair.com/company/support.html for support
information and contact details.

http://www.hunteng.co.uk/support/index.htm
www.hunteng.co.uk
mailto:support@hunteng.demon.co.uk
www.traquair.com/company/support.html

	Introduction
	The Network Description File (HEART boards)
	
	Carrier Board Declaration
	C6x Processor and Program Declaration
	FPGA / HERONIO Declaration
	GDIO Declaration
	PCIF Declaration
	Inter-Board Module Declaration (EM1C, EM1, EM2)
	BDCONN / BDLINK / BDPATH Declaration
	HEART Declaration
	Specifying timeslots in a HEART statement
	Non Blocking Mode
	Server connections
	UMI reset of HEART FIFOs

	BDCAST Declaration
	UMI reset of HEART FIFOs

	LISTEN Declaration
	Non Blocking Mode
	UMI reset of HEART FIFOs

	UMIRESET Declaration
	BootSlot Declaration
	Sample Network Description file for HEPC9

	The Network Description File (HERON-BASE2)
	
	Carrier Board Declaration
	C6x Processor and Program Declaration
	FPGA / HERONIO Declaration
	PCIF Declaration
	BootLink and BootPath Declaration
	Host Path Declaration
	UMIRESET Declaration
	FIFONOBLOCK Declaration
	Sample Network Description file for HERON-BASE2 (1)
	Sample Network Description file for HERON-BASE2 (2)
	Sample Network Description file for HERON-BASE2 (3)

	The Network Description File (HEPC8)
	
	Carrier Board Declaration
	C6x Processor and Program Declaration
	BootLink and BootPath Declaration
	Host Path Declaration
	FPGA / HERONIO Declaration
	Sample Network Description file for HEPC8

	The Network Description File (C4x systems)
	
	Carrier Board Declaration
	C4x Processor and Program Declaration
	BootLink and BootPath Declaration
	Host Path Declaration
	Sample Network Description file for HEPC3

	Network File Syntax
	Network Description File Syntax
	Describing Boards
	BD syntax
	BDCONN / BDLINK / BDPATH syntax (HEART boards only)
	C6 nodes syntax (HEPC8, HEART, and HERON-BASE2 boards only)
	C4 nodes syntax (C4x carrier boards only)
	FPGA nodes syntax (HEPC8, HEART, and HERON-BASE2 boards only)
	GDIO nodes syntax (HEART boards only)
	PCIF (Host Interface) nodes syntax (HEART and HERON-BASE2 boards only)
	EM2/EM1/EM1C nodes syntax (HEART boards only)
	BOOTLINK / BOOTPATH syntax (C4x boards, HEPC8, and HERON-BASE2 only)
	HEART syntax (HEART boards only)
	BDCAST syntax (HEART boards only)
	LISTEN syntax (HEART boards only)
	BOOTSLOT syntax (HEART boards only)
	HOSTLINK syntax
	UMIRESET syntax (HEART and HERON-BASE2 boards only)
	FIFONOBLOCK syntax (HERON-BASE2 boards only)
	Example Network Description Files
	Hepc9
	Hepc8
	Hepc3

	Feature Spotlight
	HEART fifo reset using UMI
	Using Inter-Board Connectors
	Server links

	Technical Support

