
 

 

 

 

 

 

 

HUNT ENGINEERING 
Chestnut Court, Burton Row, 

Brent Knoll, Somerset, TA9 4BP, UK
Tel: (+44) (0)1278 760188,  
Fax: (+44) (0)1278 760199, 

Email: sales@hunteng.co.uk 
URL: http://www.hunteng.co.uk 

http://www.hunt-dsp.com 

HUNT ENGINEERING 

API 

Reference Manual 
 

Document Rev C 
API software Rev 1.9.9 

P.Warnes / J.Thie 15-07-05 



                                                                                                                           

2 HUNT ENGINEERING API REFERENCE MANUAL 

COPYRIGHT 
This documentation and the product it is supplied with are Copyright HUNT 
ENGINEERING 1999-2001. All rights reserved. HUNT ENGINEERING maintains a 
policy of continual product development and hence reserves the right to change product 
specification without prior warning. 

WARRANTIES LIABILITY and INDEMNITIES 
HUNT ENGINEERING warrants the hardware to be free from defects in the material 
and workmanship for 12 months from the date of purchase. Product returned under the 
terms of the warranty must be returned carriage paid to the main offices of HUNT 
ENGINEERING situated at BRENT KNOLL Somerset UK, the product will be repaired 
or replaced at the discretion of HUNT ENGINEERING. 

Exclusions - If HUNT ENGINEERING decides that there is any evidence of 
electrical or mechanical abuse to the hardware, then the customer shall have no 
recourse to HUNT ENGINEERING or its agents. In such circumstances HUNT 
ENGINEERING may at its discretion offer to repair the hardware and charge for 
that repair. 

Limitations of Liability - HUNT ENGINEERING makes no warranty as to the fitness of 
the product for any particular purpose. In no event shall HUNT 
ENGINEERING’S liability related to the product exceed the purchase fee actually 
paid by you for the product. Neither HUNT ENGINEERING nor its suppliers 
shall in any event be liable for any indirect, consequential or financial damages 
caused by the delivery, use or performance of this product. 

Because some states do not allow the exclusion or limitation of incidental or consequential 
damages or limitation on how long an implied warranty lasts, the above limitations may not 
apply to you. 

TECHNICAL SUPPORT 
Technical support for HUNT ENGINEERING products should first be obtained from the 
comprehensive Support section www.hunteng.co.uk/support/index.htm on the HUNT 
ENGINEERING web site. This includes FAQs, latest product, software and 
documentation updates etc. Or contact your local supplier - if you are unsure of details 
please refer to www.hunteng.co.uk for the list of current re-sellers.  

HUNT ENGINEERING technical support can be contacted by emailing 
support@hunteng.demon.co.uk, calling the direct support telephone number +44 (0)1278 
760775, or by calling the general number +44 (0)1278 760188 and choosing the technical 
support option. 

http://www.hunteng.co.uk/support/index.htm
www.hunteng.co.uk


                                                                                                                           

3 HUNT ENGINEERING API REFERENCE MANUAL 

Revision History 

API ver 1.0 
Pre release version, internal release only       

API ver 1.1 
First release version. 

API ver 1.2 
First release to be put on HUNT ENGINEERING CD. Added VxDs for Win 95. Several 
Bug fixes, including asynchronous I/O fixes for Pll C Winserver. Installation completely 
changed, and troubleshooting options added.  

API ver 1.3 
VxWorks Support added. 
HEPC6 support added. 
Installation made to use uncompressed files. 

API ver 1.4 
HERON support added. 
Board specific information moved to appendices 

API ver 1.5 
HERON VxWorks support added. 
LINUX support added. 

API Doc rev B 
Complete re-organisation of manual for easier navigation. 

API ver 1.6 
Support for Serial Bus added. 

API ver 1.7 
Support for RTOS-32 added, manual re-structured. 

API ver 1.8 
Support for HEPC9 added. 

API ver 1.9 
Support for Windows 2000 and XP added (WDM drivers). 

API ver 1.9.6 
New functions documented (HSB Ex functions, HeGetDeviceInfo) 

API ver 1.9.7 
RTOS32 support updated to full 1.9.7 
VxWorks support updated to full 1.9.7 
Linux support updated to full 1.9.7 

API Doc rev C 
Rewritten HSB section 
Rewritten Error Codes section 

 



                                                                                                                           

4 HUNT ENGINEERING API REFERENCE MANUAL 

TABLE OF CONTENTS 
REVISION HISTORY.................................................................................................................................. 3 

WHY DO I NEED THE API?....................................................................................... 6 
DEVELOPMENT SYSTEMS AND TARGET SYSTEMS ................................................................................... 6 

WHAT IS THE API?..................................................................................................... 7 
PLATFORM INDEPENDENCE ..................................................................................................................... 7 
CONSISTENT INTERFACE.......................................................................................................................... 8 

HOW IS IT DONE?....................................................................................................... 9 
API LIBRARIES ........................................................................................................................................ 9 
DEVICE DRIVERS................................................................................................................................... 10 

WHAT IS SUPPORTED? ........................................................................................... 11 
PLATFORMS........................................................................................................................................... 11 

Development & Target systems........................................................................................................ 11 
Target Only systems......................................................................................................................... 11 
HUNT ENGINEERING Host Interface Boards ............................................................................... 11 

INSTALLATION......................................................................................................... 13 

API INTERFACE: CONCEPTS ................................................................................ 14 
WRITING PROGRAMS THAT USE THE API............................................................................................... 14 
DEVICES................................................................................................................................................ 14 
OPEN AND CLOSE A DEVICE .................................................................................................................. 14 
ASYNCHRONOUS ACCESS ...................................................................................................................... 15 

Writing ............................................................................................................................................. 15 
Reading............................................................................................................................................ 16 

BUFFER ALLOCATION (AND THE “HUGE” MEMORY MODEL) .................................................................. 16 
A SIMPLE PROGRAM THAT USES THE API INTERFACE ............................................................................ 17 
MAINTAINING PLATFORM INDEPENDENCE............................................................................................. 19 
LOCKING OF DEVICES FOR EXCLUSIVE ACCESS ..................................................................................... 20 

Disabling Of Lock Files................................................................................................................... 21 

API INTERFACE: DATA STRUCTURES............................................................... 22 
USING THE HANDLES............................................................................................................................. 22 

HE_HANDLE .................................................................................................................................. 22 
HE_MEMHANDLE ......................................................................................................................... 23 
HE_IOSTATUS................................................................................................................................ 23 

API INTERFACE: FUNCTIONS............................................................................... 24 
HeOpen() ......................................................................................................................................... 24 
HeOpen1() ....................................................................................................................................... 25 
HeOpenS() ....................................................................................................................................... 25 
HeClose()......................................................................................................................................... 26 
HeRead().......................................................................................................................................... 26 
HeWrite() ......................................................................................................................................... 26 
HeDelay() ........................................................................................................................................ 27 
HeReset() ......................................................................................................................................... 27 
HeReset1() ....................................................................................................................................... 27 
HeInitIoStatus.................................................................................................................................. 28 
HeWaitForIo() ................................................................................................................................. 28 
HeTestIo()........................................................................................................................................ 28 
HeErr2Text().................................................................................................................................... 29 
HeGetIoGranularity()...................................................................................................................... 29 
HeGetBoardInfo() (HERON carriers only) ..................................................................................... 29 



                                                                                                                           

5 HUNT ENGINEERING API REFERENCE MANUAL 

HeAlloc() ......................................................................................................................................... 30 
HeFree() .......................................................................................................................................... 30 
HeLock() .......................................................................................................................................... 31 
HeUnlock() ...................................................................................................................................... 31 
HeConfig() ....................................................................................................................................... 31 
HeJtagWrite() .................................................................................................................................. 32 
HeJtagRead()................................................................................................................................... 32 
HeGetLastOsError()........................................................................................................................ 32 
HeHSBSendMessageEx()................................................................................................................. 33 
HeHSBReceiveMessageEx() ............................................................................................................ 33 
HeHSBStartSendMessageEx() ......................................................................................................... 34 
HeHSBSendMessageDataEx()......................................................................................................... 35 
HeHSBEndOfSendMessageEx() ...................................................................................................... 35 
HeHSBStartReceiveMessageEx() .................................................................................................... 36 
HeHSBReceiveMessageDataEx () ................................................................................................... 36 
HeHSBEndOfReceiveMessageEx().................................................................................................. 37 
HeHSBInit() ..................................................................................................................................... 37 
HeHSBMaster() ............................................................................................................................... 37 
HeHSBSlave().................................................................................................................................. 38 
HeHSBListen()................................................................................................................................. 38 
HeHSBFlush() ................................................................................................................................. 38 
HeGetDeviceInfo()........................................................................................................................... 39 

STATUS CODES...................................................................................................................................... 39 
Notes ................................................................................................................................................ 47 

HERON SERIAL BUS (HSB)..................................................................................... 49 
INTRODUCTION...................................................................................................................................... 49 

HSB IDs or identifiers ..................................................................................................................... 49 
HSB speed........................................................................................................................................ 49 
HUNT HSB Protocol ....................................................................................................................... 49 
Non HSB Protocol Messages........................................................................................................... 50 
Accessing the Heron Serial Bus....................................................................................................... 50 
Level 3 Serial Bus functions ............................................................................................................ 50 
Level 2 Serial Bus functions ............................................................................................................ 52 
Level 1 Serial Bus Functions (lowest level) ..................................................................................... 54 
HERON Serial Bus Message Types ................................................................................................. 56 

JTAG ............................................................................................................................. 57 

CODE COMPOSER STUDIO PLUGINS................................................................. 59 
WHAT IS A PLUGIN? ............................................................................................................................... 59 
THE ‘RESET SYSTEM’ PLUGIN ............................................................................................................... 59 

What does it do? .............................................................................................................................. 59 
How do I start it?............................................................................................................................. 59 
How do I use it?............................................................................................................................... 60 
Options ............................................................................................................................................ 60 

THE ‘CREATE NEW HERON-API PROJECT’ PLUGIN ............................................................................. 61 
What does it do? .............................................................................................................................. 61 
How do I start it?............................................................................................................................. 62 
How do I use it?............................................................................................................................... 62 
Options ............................................................................................................................................ 64 
What actions does the plugin perform? ........................................................................................... 65 

EXAMPLE PROGRAMS............................................................................................ 67 

TECHNICAL SUPPORT............................................................................................ 68 
 



                                                                                                                           

6 HUNT ENGINEERING API REFERENCE MANUAL 

Why do I need the API? 

The objective of supplying the HUNT ENGINEERING API is to provide a common 
interface between software on the host machine and all HUNT ENGINEERING host 
boards. This interface is also common for all of the supported host machine operating 
systems, which are listed in the tables below. 

HUNT ENGINEERING support a set of development tools for their products, and users 
often need to gain efficient access to HUNT ENGINEERING module carriers. The 
supported way of doing this is the API interface described in this document. 

This document discusses only the API itself. The platform and board independent interface 
is discussed, and we look in detail at the functions supported. In this document we look on-
ly at things in the API that are the same across the supported operating systems and boards.  

Installation of the API is discussed in a per-operating-system document (in pdf format). At 
the time of writing this document there are 4 such documents: 

- ‘api – windows (installation & user manual)’ for Windows 95/98/ME/NT/W2K, 

- ‘api – linux (installation & user manual) for LINUX, 

- ‘api – vxworks (installation & user manual) for VxWorks, 

- ‘api – rtos-32 (installation & user manual) for RTOS-32. 

Additional supported operating systems will have a similarly named installation and user 
manual dedicated to them. 

Development Systems and Target Systems 

There are two types of API support: support for Development Systems, and support for 
Target Systems. 

An Operating System is a Target System if a system can be interfaced with it via the API 
standard interface. An Operating System is a Development System if the system can be 
interfaced with it via the API standard interface, and if there are development tools 
available for that operating system. The development tools implied are the TI 
compiler/linker/assembler, 3L Parallel C, Server/Loader, and Code Composer.  



                                                                                                                           

7 HUNT ENGINEERING API REFERENCE MANUAL 

What is the API? 

The API uses a simple asynchronous communications model, which we briefly discuss here 
– for full details refer to later sections of this user manual. 

First the device must be claimed by performing an HeOpen() on the device. This function 
takes a board identifier, (to specify which type of HUNT ENGINEERING module carrier 
is to be opened), a board number (to specify which of the boards in the system) and a 
device number (to specify which resource on that board). The function returns a file 
descriptor if the call is successful, or else an API error code. 

If the system is to be booted, a reset must be performed using HeReset() on the file 
descriptor given by the open call. 

A write to the FIFO can be started using the HeWrite() function on the file descriptor. 

A read from the FIFOs can be started using the HeRead() function on the file descriptor. 

Both the read and write functions will return immediately, with either a successful status, an 
in-progress status or an error. The in-progress status allows the host side application to 
continue processing of previous data while the hardware access is taking place. 

The status of an I/O can be tested at any time using the HeTestforIO() function, or the 
host program can be blocked until it is complete by using the HeWaitforIO() function. 

Platform Independence 

The API is available on a number of platforms, it is possible that these use different 
definitions of certain data types, for example the size of an integer, how many bits are in a 
pointer, how large an area of memory a pointer can handle, etc. To provide Application 
level consistency the API introduces a set of Variable Types that allow a programmer to 
avoid platform specific data types, examples are: 

eight bit unsigned HE_BYTE 

32 bit unsigned HE_DWORD 

32-bit signed HE_INT32 

Pointer to eight bit oriented data HE_PBYTEBUFFER 

Boolean HE_BOOLEAN 

This API is provided for all platforms and saves the developer from having to modify their 
source code to handle such platform differences.  

An example of the power of this is on DOS where in order for a pointer to transparently 
address more than 64Kbytes it must be declared “huge”. The API does this automatically. It 
does affect performance but this is more than outweighed by the portability benefits. It is 
also the case that some devices require 32 bit aligned data for DMA (e.g. PCI Master 
Mode), using the defined pointers and API memory allocation routines this is handled 
automatically. 



                                                                                                                           

8 HUNT ENGINEERING API REFERENCE MANUAL 

Consistent interface 

The API adopts a simple I/O model: 

An individual device on a Host Interface can be described as: 

• A board type - e.g. “hep3b” for the HEPC3 rev B interface. Board types are represented 
as strings to allow the introduction of new board types to be transparent to application 
programs 

• A Board Number, where a system may have more than one Host Interface on the 
system the board number identifies which one is required. This is a 16-bit (HE_WORD) 
unsigned integer starting at 0. 

• A Device Name identifies the separate devices on the Module carrier. This is 
represented as a 16 bit unsigned integer (HE_WORD), however a number of constants are 
pre-defined for all the current possibilities, e.g. ComportA, ComportB, JTAG, … 

An individual device (e.g. ComportA) can only be accessed once it has been “opened”. It is 
available to other applications (or parts of the same application) after it has been “closed”. 
This is enforced through the use of “lock files” which are used by all variants of the API 
running on a system (e.g. DOS, Win 3.1 and Win32 applications running on Windows 95). 
In those Operating Systems which implement this automatically, this “lock file” is not used. 
An example of such an Operating System is VxWorks. It ensures that it is not possible for 
one application to interfere with another. The API provides two routines for this: 
HeOpen() and HeClose(). An Open device has a HE_HANDLE associated with it for use 
by all the other routines. 

Generally an application needs to “Read from”, “Write to” and “Reset” a Device, in the 
API this is represented by HeRead(), HeWrite() and HeReset(). 

As mentioned earlier there are one or two other useful things that may be required, for 
example: memory allocation (HeAlloc(), HeLock(), HeUnlock(), HeFree()). 

For performance reasons the API supports the concept of “Overlapped” or 
“Asynchronous” read/write. To do this it uses a structure called a HE_IOSTATUS and 
some associated API functions to track what is happening. 



                                                                                                                           

9 HUNT ENGINEERING API REFERENCE MANUAL 

How is it done? 

The implementation details of the API are specific to each Operating system, but the 
concept is always the same:- 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Library layer provides an interface to the development tools and user “host side 
application” programs, which is the same simple interface for all HUNT ENGINEERING 
hardware. 

The driver layer provides an interface that is optimised for each operating system, and host 
board. 

Thus the API provides an interface between the hardware and “host side” software that 
remains the same regardless of hardware type or revision, and also regardless of operating 
system. 

This brings you a well-supported interface coupled to maximum performance for those 
operating systems that the HUNT ENGINEERING API supports.  

API libraries 

The API tries to provide as much transparency as possible by providing libraries that form 
the point of interface to the API. 

On DOS the API routines are provided in a “static library”. A new release of the API will 
require applications to be re-linked against the new “static library”. 

On Windows platforms the API routine entries are provided in a “stub library”. A new 
release of the API will not require applications to be re-linked. The API routines themselves 
are provided in a “DLL”. A DLL is a Dynamic Link Library, which is installed in a 
common directory and loaded “on demand”. This means that new DLLs can be provided 
and applications will continue to work without requiring re-linking. 

 

User program Development tool 

Library layer 

Driver layer 
API 

HARDWARE



                                                                                                                           

10 HUNT ENGINEERING API REFERENCE MANUAL 

On VxWorks the API routines are supplied in the standard compiled code (“.o”) file 
format that is used by VxWorks. 

As an example, suppose HUNT ENGINEERING have just developed a new host board, 
we will ship an updated DLL that supports this board. If an application identifies the host 
board it uses via a parameter of some sort (on the Command Line, in a “.ini” file, from 
the Registry) then the application can start using the new device straight away. See the 
discussions in the Section on tools such as Parallel C, Code Composer, Server Loader for 
tools that support this idea. 

Device Drivers 

There is much confusion about Device Drivers so we will try to explain a few terms as used 
in the API. 

Some platforms support Direct I/O, this is where an application or Library can issue I/O 
or memory access instructions to Devices without support from the Operating System. 
MSDOS is a good example of such an Environment. Other platforms actually prevent such 
“direct” access - Windows NT is a good example. 

A Device Driver is a piece of code that has a close link to the Operating System; examples 
are Kernel Mode Drivers on Windows NT and VxDs on Windows 3.1 and Windows 95. 

The API libraries use a mixture of techniques: 

On MSDOS they only use Direct I/O 

On Windows 95 they can use a VxD for normal I/O and use direct I/O for JTAG 
(for performance reasons). If a VxD is properly installed for the board being used, 
then this will be used by the DLL, if there is no VxD then the DLL will use direct 
I/O to the board. 

On Windows NT / 2000 / XP they only use Kernel Mode Drivers. 

On VxWorks they use standard compiled code (“.o”) files that are downloaded 
onto the target system. The “*.o” files implement a POSIX standard driver 
(hevxdrv.o) as the API library interface, other “*.o” are implementations for the 
different boards). 

On LINUX, modular device drivers are used, which take care of all I/O. 

Detecting and using the Device Driver is the responsibility of the appropriate library. 
Providing the Driver for Windows 95 and Windows NT has been installed then the Library 
is able to use it - it will identify it based on the Host Interface Name in the HeOpen() call. 
The Win32 library (hendrv.dll for Microsoft Languages) detects whether it is on 
Windows NT or Windows 95. If it detects Windows NT, it will use a Kernel Mode Driver. 
If it detects Windows 95 it will use a VxD if one is present and Direct I/O if a VxD is not 
available. 

This flexibility is automatically provided to applications which “should not” be concerned 
with “How” the API is provided - that is an Installation and HUNT ENGINEERING 
provided facility. It may be that the first release of a library for a new board is only provided 
by Direct I/O, moves onto a Device Driver without performance enhancements and then 
provides a highly optimised device driver. All of this is transparent to the application 
program which benefits from the improvements without needing to re-code or (in many 
cases) re-link. 



                                                                                                                           

11 HUNT ENGINEERING API REFERENCE MANUAL 

What is supported? 
Platforms 
This release of the API (Ver 1.9.7) supports Intel based PCs (386, 486, Pentiums) that are 
running one of the Microsoft operating systems, Windows 95/98, Windows NT, 2000 and 
XP. In addition to those mentioned the API also supports VxWorks for the Intel x86 
platform with the PC board support package (BSP). For VxWorks there is target support 
only. LINUX support exists for Intel based PCs, with a kernel version of 2.4.*. The API 
was developed and tested on RedHat 6.1, 7.1 and 9. 

Current support is summarised below:- 

Development & Target systems 
O/S API Compiler Server/Loader (C4x) 3L Parallel C Code Composer 

Win95/98 yes yes Yes Yes Yes 

WinNT yes yes Yes Yes (with the 32-bit  
3L Winserver) 

Yes 

W2000/XP yes yes Yes no Yes 

Solaris (Sun) yes yes Yes Yes No 

Target Only systems 
O/S API Compiler Server/Loader (C4x) 3L Parallel C Code Composer 

Linux (Intel) yes no Yes No No 

RTOS-32 yes no Yes No No 

DOS yes yes Yes Yes No 

VxWorks yes no Yes No No 

Note that VxWorks is not running on the DSP, it is actually running on the host system. 

Future releases may add support for other PC based operating systems, but that support 
may be limited by which of the DSP development tools are available for that platform. 

HUNT ENGINEERING Host Interface Boards 
 HEPC2E HEPC3 HEV40-4 HERON-

BASE2 
HEPC8 HEPC9 

DOS Yes Yes Yes No No No 

Win95/98 Yes Yes Yes No Yes Yes 

WinNT Yes Yes No No Yes Yes 

W2000/XP No Yes No Yes Yes Yes 

Linux Yes Yes No No Yes Yes 

RTOS-32 No No No No Yes Yes 

VxWorks Yes Yes No No Yes Yes 

Note that for DOS, Windows and RTOS-32 the Microsoft Visual C++, and Borland C++ 
compilers are supported. For VxWorks and LINUX the GNU C/C++ compiler is 



                                                                                                                           

12 HUNT ENGINEERING API REFERENCE MANUAL 

supported. 



                                                                                                                           

13 HUNT ENGINEERING API REFERENCE MANUAL 

Installation 

Installation of the API is discussed in a different document. There is an installation guide 
per supported operating system. Please refer to: 

- ‘api – windows (installation & user manual)’ for Windows 95/98/ME/NT/W2K, 

- ‘api – linux (installation & user manual) for LINUX, 

- ‘api – vxworks (installation & user manual) for VxWorks, 

- ‘api – rtos-32 (installation & user manual) for RTOS-32. 

 

 



                                                                                                                           

14 HUNT ENGINEERING API REFERENCE MANUAL 

API Interface: Concepts 

Writing Programs that use the API 

The HUNT ENGINEERING API allows you to write a host computer application that 
can communicate and transfer data between the DSP system and the host machine. 

Please note that the HUNT ENGINEERING Server/Loader can boot a network of DSP 
processors. The software comes in both executable and library format. If what you want is 
just to simply and quickly boot a network of DSP processors from within your own applica-
tion, then using the Server/Loader library is much easier and quicker than developing your 
own network boot application using the API. 

The Server/Loader uses the API when booting (and serving) a network of processors. You 
could see it as a layer above the HUNT ENGINEERING API. You can also use the Server 
/Loader and API together. For example, you can use the Server/Loader to boot a network 
of DSP processors, then use the API to communicate between your DSP programs and 
your PC host application (running on Windows, LINUX, VxWorks, RTOS-32 or another 
supported operating system). 

Devices 

The HUNT ENGINEERING API works with a concept called ‘devices’. A carrier board 
has 1 or more devices. For example, the HEPC8 has a FIFO connecting the PCI interface 
to the first module on the board. This FIFO is one device (‘FifoA’). The HEPC8 also has a 
serial bus interface. This is another device (‘HSB’). Finally, there is a JTAG interface, used 
(for example) by Code Composer Studio, called ‘Jtag’. 

Different carrier boards may have different devices. For example, some boards may have 
more than 1 FIFO, and may support a device ‘FifoB’. As another example, some carrier 
boards may have no serial bus interface. Typically there is always at least a ‘FifoA’ device 
and a ‘Jtag’ device, but this is not a rule and you must not assume that a certain device exists 
on all carrier boards. 

Currently defined are devices: 
FifoA 
FifoB 
FifoC 
FifoD 
FifoE 
FifoF 
Jtag 
HSB 

Open and Close a Device 

The basic principle of the interface to the API is that you gain access to a device that is 
correctly identified by its ‘board type’, ‘board number’ and ‘device type’ using the 
HeOpen(), HeOpen1() or HeOpenS() function. This function is the ONLY function 



                                                                                                                           

15 HUNT ENGINEERING API REFERENCE MANUAL 

that needs to know which device you are accessing, so you should provide a simple way to 
alter the details it uses so that a different device can easily be selected if the system requires 
it. Examples of how to do this are: command line parameters or storing the details in a text 
based “ini” type file. 

This function will not allow you access to a device that is already in use, or does not exist. If 
it succeeds then it provides you with a unique “handle” which you use to identify the device 
in all future uses. 

Once you have ownership of an open device you can perform reset, write and read type 
accesses to that device.  

The read and write functions use “buffers” of memory that the data is passed through, and 
there are some memory management issues (Allocation and locking) that are aided by some 
API functions. 

Asynchronous access 

The read and write operations are asynchronous; that is, you start them with HeRead() or 
HeWrite(), but they will complete even if the transfer has not completed. The API then 
provides you with status functions (HeTestIo() and HeWaitForIo()) to allow you to 
track the progress of the transfer. This allows, but does not force, your host-based 
application to overlap the transfer of data with the processing or storage of data. 

Conceptually, you can think of a read or write transfer to proceed ‘in parallel’ with your 
application. The HeRead() or HeWrite() function only requests the parallel thread to 
perform a read or write transfer. The status functions (HeTestIo() and HeWaitFor- 
Io()) verify if the parallel thread has already completed the transfer or not. 

The HeTestIo() function just asks the parallel thread whether is has completed. It then 
immediately returns. The other status function, HeWaitForIo(), works differently. It will 
explicitly wait for the transfer to complete. 

We used the term ‘parallel thread’ in a conceptual sense. The actual implementation can be 
anything: perhaps a device driver, an interrupt routine, win32 threads, and so on. 

Writing 
To write data to a carrier board, use the ‘HeWrite’ function. If ‘HeWrite’ completes the 
transfer, its return value will be ‘HE_OK’. If the transfer is still ongoing, the return value is 
‘HE_IoInProgress’. Or it returns an error value. 

Two functions exist that you can use to test whether the write transfer has completed, 
‘HeTestIo’ and ‘HeWaitForIo’. The first function, ‘HeTestIo’, quickly tests whether the 
transfer has completed, and then returns (it has the same return values as ‘HeWrite’). The 
second function, ‘HeWaitForIo’ explicitly waits for the transfer to complete. It returns 
‘HE_OK’ or an error value, but not ‘HE_IoInProgress’. 

Using ‘HeWaitForIo’, write-to-carrier-board code would typically look like: 
Status = HeWrite(hDevice, WriteBuffer, size, WriteIoStatus); 
// do some of your other work here 
if (Status == HE_IoInProgress) 
       Status = HeWaitForIo(hDevice, WriteIoStatus); 
if (Status != HE_OK) // report an error and return 
 



                                                                                                                           

16 HUNT ENGINEERING API REFERENCE MANUAL 

Using ‘HeTestIo’, write-to-carrier-board code would typically look like: 
Status = HeWrite(hDevice, WriteBuffer, size, WriteIoStatus); 
while (Status == HE_IoInProgress) 
{ 
       // do some of your other processing here 
       Status = HeTestIo(hDevice, WriteIoStatus); 
} 
if (Status != HE_OK) // report an error and return 

Reading 
To read data from a carrier board, use the ‘HeRead’ function. If ‘HeRead’ completes the 
transfer, its return value will be ‘HE_OK’. If the transfer is still ongoing, the return value is 
‘HE_IoInProgress’.  

Two functions exist that you can use to test whether the read transfer has completed, 
‘HeTestIo’ and ‘HeWaitForIo’. The first function, ‘HeTestIo’, quickly tests whether the 
transfer has completed, and then returns (it has the same return values as ‘HeRead’). The 
second function, ‘HeWaitForIo’ explicitly waits for the transfer to complete. It returns 
HE_OK or an error value, but not ‘HE_IoInProgress’. 

Using ‘HeWaitForIo’, read-from-carrier-board code would typically look like: 
Status = HeRead(hDevice, ReadBuffer, size, ReadIoStatus); 
// do some of your other work here 
if (Status == HE_IoInProgress) 
       Status = HeWaitForIo(hDevice, ReadIoStatus); 
if (Status != HE_OK) // report an error and return 
 
Using ‘HeTestIo’, read-from-carrier-board code would typically look like: 
Status = HeRead(hDevice, ReadBuffer, size, ReadIoStatus); 
while (Status == HE_IoInProgress) 
{ 
       // do some of your other processing here 
       Status = HeTestIo(hDevice, ReadIoStatus); 
} 
if (Status != HE_OK) // report an error and return 

Buffer Allocation (and the “huge” memory model) 

The API is designed to be compatible across a range of Host System platforms. One of the 
major areas of difference between MSDOS and Win32 is the amount of memory that can 
be addressed by a pointer and how that memory can be allocated. 

In order to achieve this platform independence, the API uses API specific pointer types and 
memory allocation routines, it also places some restrictions on the memory model a 16-bit 
application can be built with: 

1) On MSDOS applications have to be built using the “large” memory model. 

2) All buffers must be allocated using the four memory management API functions - 
HeAlloc(), HeLock(), HeUnlock() and HeFree(). These provide a “lowest 
common denominator” scheme that will work on all platforms. On some platforms, 
some of the routines perform no useful action but ensure that applications using them 
still function correctly. 

The memory allocation routines are fully described in another section, but in summary: 



                                                                                                                           

17 HUNT ENGINEERING API REFERENCE MANUAL 

HeAlloc() Allocates a buffer, it does this using a huge alloc (halloc) where 
appropriate. 

HeLock() Returns a (void *) pointer to the buffer allocated by HeAlloc() - 
this should be cast to an appropriate HE_PxxxxBUFFER to ensure 
the appropriate "huge" address calculation by the Compiler. 

Although there is a performance impact of using "huge addressing" it eliminates any 
barriers such as a maximum buffer size of 64KBytes and retains source code 
compatibility across the range of supported platforms. 

A simple program that uses the API interface 

The following illustrates how to write a simple application. The main body of this manual 
should be consulted for full details of the routines used. 
#include <stdio.h> // Always useful to have 
#include <stdlib.h> // ditto 
#include <string.h> 
#include “heapi.h” // defines ALL the API things we need 
 
HE_HANDLE hDevice = NULL; // Handle for the device we will be 

using 
HE_IOSTATUS ReadIoStatus = NULL; // IoStatus for Read transfers 

HE_IOSTATUS WriteIoStatus = NULL; // IoStatus for Write transfer 

HE_MEMHANDLE memHandle = NULL; // Handle for allocated memory 

 

HE_DWORD Status; // General Status variable 

HE_PDWORDBUFFER test; // pointer for a data buffer (to be allocated 
later) 

 

void error(HE_DWORD errorcode) // utility routine to provide useful error 
messages 

{ 

char text[120]; 

 

HeErr2Text(Status, text); // API routine that converts API error codes 
into Text 

printf("Failed - %s, OsError = %d\n", text, errorcode); 

 

Status = HeClose(&hDevice); // Make sure the Device is closed after an 
error 

exit(1); // just terminate - simple failure handling! 

} 

 

  

 

void main(int argc, char *argv[]) 



                                                                                                                           

18 HUNT ENGINEERING API REFERENCE MANUAL 

{ 

HE_WORD  Board; // The board number we will be using 

char *devname; // The Host Interface Type we will be using 

HE_WORD Device; // The device we want to use 

int i; 

 

strcpy(devname, “hep3b”); // Use a HEPC3 rev B motherboard 

Board = 0; // Board 0 

Device= ComportA; // Comport A on the HEPC3 (uses predefined 
constant) 

 

Status = HeAlloc(&memHandle, 1000); // Allocate a buffer 

if(Status != HE_OK) error(HeGetLastOsError(memHandle)); // report an error on 
failure 

 

Status = HeLock(memHandle, &test); // finish memory allocation 

if(Status != HE_OK) error(HeGetLastOsError(memHandle)); 

 

Status = HeOpen(devname, Board, ComportA, &hDevice); // Open the Device 

if(Status != HE_OK) error(HeGetLastOsError(hDevice)); 

 

printf("Resetting...\n"); 

Status = HeReset(hDevice); // reset the device 

if(Status != HE_OK) error(HeGetLastOsError(hDevice)); 

 

Status = HeInitIoStatus(hDevice, &ReadIoStatus); // Initialise read IoStatus 

if(Status != HE_OK) error(HeGetLastOsError(hDevice)); 

 

Status = HeInitIoStatus(hDevice, &WriteIoStatus); // Initialise write IoStatus 

if(Status != HE_OK) error(HeGetLastOsError(hDevice)); 

 

/* at this point we assume that the host board has some data to send, its unlikely, 
but this  is only an example program */ 

 

 

Status = HeRead(hDevice, test, 1000, ReadIoStatus); // Initiate a read 

if(Status == HE_IoInProgress) {  // If read hasn’t finished 

Status = HeWaitForIo(hDevice, ReadIoStatus); // wait for it to finish 

 } 

if(Status != HE_OK) error(HeGetLastOsError(hDevice)); // Check for errors 

 

Status = HeUnlock(memHandle);  // unlock the memory 



                                                                                                                           

19 HUNT ENGINEERING API REFERENCE MANUAL 

if(Status != HE_OK) error(HeGetLastOsError(memHandle)); // check for errors 

Status = HeFree(&memHandle); // free the buffer 

if(Status != HE_OK) error(HeGetLastOsError(memHandle)); // check for errors 

 

Status = HeClose(&hDevice); // close the device - we’re done 

if(Status != HE_OK) error(HeGetLastOsError(hDevice)); // check for errors 

 

exit(0); // Finished 

} 

 

There are a few things to note here: 

• ALWAYS check for errors after calling an API routine! 

• It’s much better to print a useful text message than an error value so the API provides a 
suitable routine to help in doing this 

• Because I/O is asynchronous you always need to check whether it is finished - this does 
not have to be straight away if you can do other useful work first. HOWEVER, the API 
does not support MULTIPLE outstanding I/O, so you must wait for an I/O on a 
particular device to finish BEFORE initiating another. It is, however, quite reasonable 
to have outstanding read and write on the same device but not more than 1 read or 
more than 1 write. 

• It should not be necessary to ever use a Data type other than an API data type for the 
standard sort of activities. Care should ALWAYS be taken when using platform specific 
types (the most common problem is to use an int rather than an HE_WORD). If the 
compiler complains then you should find out why rather than just “cast” away the 
problem. If an API requires a HE_WORD don’t cast an “int” variable when required, 
declare the variable as a HE_WORD if that is what it is. 

• The program above won’t achieve much in practice as it resets the ‘C4x connected to 
ComportA and doesn’t load an application on it to read from. Look at the example 
“reads” to see a more practical use of the API. 

Maintaining Platform Independence 

The sample programs shipped with the library are all platform independent and will 
compile, link and run on all the supported platforms without modification. As this platform 
independence is one of the objectives of the API it is strongly recommended that your 
application uses the same variable and pointer types as described below: 

The following types will be defined as appropriate for the compiler and platform: 

HE_DWORD 32 bit unsigned data item 

HE_WORD 16 bit unsigned data item 

HE_BYTE 8 bit unsigned data item 

HE_INT32 32 bit signed data item 

HE_INT16 16 bit signed data item  



                                                                                                                           

20 HUNT ENGINEERING API REFERENCE MANUAL 

HE_INT8 8 bit signed data item  
HE_PBYTEBUFFER pointer to a buffer of 8-bit unsigned data items (this will be 

declared __huge on a 16 bit platform allowing use of buffers > 
64Kbyte) 

HE_PWORDBUFFER pointer to a buffer of 16-bit unsigned data items (this will be 
declared __huge on a 16 bit platform allowing use of buffers > 
64Kbyte) 

HE_PDWORDBUFFER pointer to a buffer of unsigned 32-bit data items (this will be 
declared __huge on a 16 bit platform allowing use of buffers > 
64Kbyte) 

HE_PINT8BUFFER pointer to a buffer of 8-bit signed data items (this will be 
declared __huge on a 16 bit platform allowing use of buffers > 
64Kbyte) 

HE_PINT16BUFFER pointer to a buffer of 16-bit signed data items (this will be 
declared __huge on a 16 bit platform allowing use of buffers > 
64Kbyte) 

HE_PINT32BUFFER pointer to a buffer of 32-bit signed data items (this will be 
declared __huge on a 16 bit platform allowing use of buffers > 
64Kbyte) 

HE_BOOLEAN platform independent Boolean type. 
HE_HANDLE Handle to Underlying Device Driver. 
HE_IOSTATUS Pointer to data structure used to contain the current status of an 

I/O operation, it is typically used for the Status of an 
asynchronous read/write operation 

HE_MEMHANDLE memory handle used when allocating "locked" buffers. 

Locking of Devices for Exclusive access 

All the API libraries support an "exclusive access" model except for the VxWorks API: 

Whenever a device (e.g. Comport, FIFO or Jtag) is opened (via HeOpen()) a lock file will 
be created in the lock directory. This file is opened with exclusive write access and so forces 
any other attempt to open the file to fail. 

This mechanism provides a platform wide common protection mechanism, in particular it 
ensures that MSDOS programs and Win32 programs can coexist on the same platform (e.g. 
Windows 95).  

By default the lock directory will be created as: 
c:\HE_LOCK 

To change the default, create an environmental variable giving the directory to create 
HE_LOCK under - e.g. 

set HE_LOCK=d:\fred 

will cause the lock directory to be 
d:\fred\HE_LOCK 

Typically this should be done in autoexec.bat for MSDOS and Windows 95 and in the 
System Environmental Variables section of the System Option in the Control panel in 
Windows NT. 



                                                                                                                           

21 HUNT ENGINEERING API REFERENCE MANUAL 

A program failing to get exclusive access to the relevant lock file will report a 
HE_LockFailed error along with whatever Operating System specific error code 
corresponds. 

The lock file name is of the form xxxxyyzz.lck where: 

xxxxyyzz is a HEX Number where 

      || is the Board Id (0, 1, ...) 

    || is the Device Id (0=ComportA, ...) 

||||  is a unique board type identifier,  

• hep2d=0x02 

• hep2e=0x03 

• hep3b=0x04 

• hep8a=0x08 

Disabling Of Lock Files 
PLEASE NOTE that lock files are not used by VxWorks. 

There are a small number of cases where the use of a lock file causes problems to a system. 
An example of this could be a system where a ROM-disk file system is used to run the host 
code. In this case the file system is read only and the generation of a lock file will fail. To 
allow this to be supported the HeOpenS() function is provided which allows some of the 
more unusual options to be passed to it in a structure. There is an 
HE_Switch_NoLockFile flag that can be passed indicating that no locking should take 
place. WARNING this function should only be used in cases where it is absolutely 
necessary as it is disabling one of the major features of the API. 

 



                                                                                                                           

22 HUNT ENGINEERING API REFERENCE MANUAL 

API Interface: Data Structures 

Using the Handles 

There are 3 data structures used by the API: 

• HE_HANDLE 

• HE_IOSTATUS 

• HE_MEMHANDLE 

They are allocated and de-allocated by the API libraries. From the application point of view 
these are managed as pointers, they are declared as  

HE_HANDLE hDevice = NULL; // Initialise device handle 

HE_IOSTATUS pIoStatus = NULL; // Initialise IoStatus handle 

HE_MEMHANDLE memHandle = NULL; // Initial memory handle 

The requirement to initialise them to NULL is deliberate in order to catch programming 
errors, the behaviour of the API routines when the handles have not been initialised is 
unpredictable and unsupported. The routines will check for NULL handle and report an 
error when it is not correct. 

If you look at the heapi.h file you will see that the three data types are in fact "pointers to 
structures". All that is visible to the application is a simple structure. However, the pointers 
do actually point to a much larger data structure inside the libraries. The only field visible to 
an application is the first - HandleType. This field is used to validate that a handle is 
pointing to a valid structure and of the correct type for the operation.  

In the current release of the API: 
hDevice->HandleType = 0xdeafeed0  

pIoStatus->HandleType = 0xdeafeed2 

memHandle->HandleType = 0xdeafeed1 

The data structures corresponding to these handles are allocated, used and destroyed as 
follows: 

HE_HANDLE 
This must be initialised to NULL before calling the HeOpen() function. 

It will be allocated by HeOpen() and released by HeClose(). Both these routines require 
a pointer to the HE_HANDLE to be passed to them. 

IMPORTANT - whether the HeOpen() succeeds or fails it should ALWAYS be matched 
by a HeClose() - this ensures that the data structure is correctly cleaned up. If no data 
structure had been allocated (i.e. the Handle is still NULL) the close routine will report this 
via its status return. 

Currently there are only 2 status returns from HeOpen when the data structure will not have 
been allocated: 



                                                                                                                           

23 HUNT ENGINEERING API REFERENCE MANUAL 

HE_HandlePointerNotNull No data allocated as handle must be NULL 
when calling HeOpen(). HeClose() will 
probably report an error of 
HE_InvalidHandlePointer if the 
pointer is to random data. 

HE_FailedToAllocMemoryForHandle No Data allocated as there was an error 
calling malloc (typically _fmalloc). 
HeClose() will report an error of 
HE_NullHandlePointer as it must 
have been NULL for HeOpen to get as far 
as reporting this error. 

Anything else data allocated - to release call HeClose() 

This means that there are a number of error status returns that still require a HeClose(). 
Normally one would not expect to Close a device that failed to Open but the requirements 
of the implementation of the API on some platforms requires some compromise of the 
generic model. 

Always match EVERY HeOpen() with a HeClose() whether it succeeds or not.  

HE_MEMHANDLE 
This should be initialised to NULL before calling HeAlloc(). 

It is allocated by the HeAlloc() routine and released by the HeFree() routine 

All HeAlloc()s should be matched by a HeFree(). 

HE_IOSTATUS 
This should be initialised to NULL before calling HeInitIoStatus(). 

It is allocated by HeInitIoStatus() and released when the associated hDevice is 
HeClosed()'d. 

 



                                                                                                                           

24 HUNT ENGINEERING API REFERENCE MANUAL 

API Interface: Functions 

The following routines are always present: 

HeOpen() 
HE_DWORD HeOpen(char *BoardType, HE_WORD BoardId, HE_WORD DeviceId, 
HE_HANDLE *hDevice); 

This function provides exclusive access to the requested device. Where appropriate it will 
access a suitable device driver for the platform and device. Wherever possible it will "Open" 
the device to support asynchronous I/O - i.e. the HeRead() and HeWrite() routines 
may return before the I/O is complete and it is necessary to call either HeTestIo() or 
HeWaitForIo() routines. Even if asynchronous I/O is not possible the HeTestIo() 
and HeWaitForIo() routines will behave correctly and so it should ALWAYS be 
assumed that I/O is asynchronous even though at any particular time a particular 
implementation may not be. 

BoardType Establish access to a board identified by an ASCII character string. 
Currently supported HUNT ENGINEERING boards are: 

 “hep4a”  HEPC4 rev A/B 
 “hep3b" HEPC3 rev B/C 
 "hep2e" HEPC2E 
 "hep2d" HEPC2-M rev D 
 "hep6a" HEPC6 rev A 
 “hep8a” HEPC8 rev A 
 “hep9a” HEPC9 rev A 

For MSDOS and Windows 95 these boards are also supported: 

xahev HEV40-4, for use with a XYCOM card with 486 processor 
xbhev HEV40-4, for use with a XYCOM card with Pentium processor 

These 2 boards are always accessed directly by the drivers. 

BoardId is used to identify the required board of this type where more than 1 is 
supported. First board is 0, second 1, etc. 

DeviceId selects the BoardType specific device where a board supports more than 
1 device. There are a number of predefined constants for typical 
situations. The following definitions are currently made: 

• FifoA 

• ComportA  

• ComportB  

• Jtag                      N.B. Not available under VxWorks and LINUX. 

• ComportC  

• ComportD  

• HSB                     N.B. Not available under VxWorks and LINUX.  



                                                                                                                           

25 HUNT ENGINEERING API REFERENCE MANUAL 

If you want to use HeOpen() with one of these constants (as a string), rather than the 
corresponding value then use the HeOpen1() routine. 

*hDevice pointer to the handle for the device - used in all subsequent operations 

return HE_OK is returned when the call was successful. When the call was not 
successful an error code is returned. See the “Status Codes” section 
elsewhere in this chapter for details. An O/S specific error code can 
be found by calling GetLastOsError(hDevice). 

IMPORTANT: All calls of HeOpen() MUST be matched by a call to HeClose(), even 
if the HeOpen() returned an error code.  

HeOpen1() 
HE_DWORD HeOpen(char *BoardType, HE_WORD BoardId, char *DeviceC, HE_HANDLE 
*hDevice); 

This routine is exactly the same as the HeOpen() routine except that it accepts a 
DeviceId as a string instead of as number. This is of benefit to programs that retrieve the 
DeviceId from some form of user input and don’t want to have to “hard code” the string 
to constant mapping of the DeviceId. 

IMPORTANT: All calls of HeOpen1() MUST be matched by a call to HeClose(), 
even if the HeOpen1() returned an error code 

HeOpenS() 
HE_DWORD HeOpenS(char *BoardType, HE_WORD BoardId, char *DeviceC, HE_HANDLE 
*hDevice, HE_DWORD *switches); 

This routine is exactly the same as the HeOpen1() routine except that it accepts a switch 
array (an array of HE_DWORDS, the last entry must have the value HE_Switch_Last) to 
allow for some of the rarer options on opening. The currently supported options are: 

• HE_Switch_Last Last option in the switch array - indicates end of list 

• HE_Switch_NoLockFile Don’t use a lock file Use this option with caution 
as it is now YOUR responsibility to ensure 
exclusive device access.  

• HE_Switch_ByteSwap Where available turn on the module carrier’s 
Byteswap logic. 

• HE_Switch_NoPCIMasterMode Do not use master mode for PCI boards. 

• HE_Switch_NoInterrupts Do not use interrupts when reading or writing. 

• HE_Switch_TestInterrupt Perform an interrupt test for this device. 

• HE_Switch_IRQ10 For VxWorks used with the HEPC2: use interrupts 
with IRQ 10 

• HE_Switch_IRQ11 For VxWorks used with the HEPC2: use interrupts 
with IRQ 11 

• HE_Switch_IRQ12 For VxWorks used with the HEPC2: use interrupts 
with IRQ 12 



                                                                                                                           

26 HUNT ENGINEERING API REFERENCE MANUAL 

• HE_Switch_IRQ15 For VxWorks used with the HEPC2: use interrupts 
with IRQ 15 

IMPORTANT: All calls of HeOpenS() MUST be matched by a call to HeClose(), 
even if the HeOpenS() returned an error code.  

HeClose() 
HE_DWORD HeClose(HE_HANDLE *hDevice); 

Release resources allocated when the device was opened, and  

hDevice is the handle returned from HeOpen. 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

HeRead() 
HE_DWORD HeRead(HE_HANDLE hDevice, void *data, HE_DWORD Count, HE_IOSTATUS 
IoStatus); 

Initiate a read operation on a previously opened device. Under MSDOS the function will 
return after all bytes have been read. Under Windows, the function returns immediately, 
and progress of the read operation can be checked by examining IoStatus (using 
HeTestIo()). IoStatus must have been initialised using the HeInitIoStatus 
function. 

hDevice is the handle returned from HeOpen. 

data  is a pointer to the start of the buffer to read into 

Count  is the number of BYTES to read 

IoStatus is the IoStatus handle. It is used to obtain the status of the 
outstanding I/O or to wait for its completion. 

return  HE_OK is returned when the call was successful, and I/O was 
completed. HE_IoInProgress is returned when the call was 
successful, but when I/O was not yet completed. When the call was 
not successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). In particular 
if the I/O is complete it will return HE_OK and if it is still in 
progress it returns HE_IoInProgress. 

HeWrite() 
HE_DWORD HeWrite(HE_HANDLE hDevice, void *data, HE_DWORD Count, HE_IOSTATUS 
IoStatus); 

Initiate a write operation on a previously open device. Under MSDOS the function will 
return after all bytes have been written. Under Windows, the function returns immediately, 
and progress of the write operation can be checked by examining IoStatus (using 
HeTestIo()). IoStatus must have been initialised using the HeInitIoStatus 



                                                                                                                           

27 HUNT ENGINEERING API REFERENCE MANUAL 

function. 

hDevice is the handle returned from HeOpen. 

*data  is a pointer to the start of the buffer to write from 

Count  is the number of BYTES to write 

IoStatus is the IoStatus handle. It is used to obtain the status of the 
outstanding I/O or to wait for its completion. 

return HE_OK is returned when the call was successful, and I/O was 
completed. HE_IoInProgress is returned when the call was 
successful, but when I/O was not yet completed. When the call was 
not successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). In particular 
if the I/O is complete it will return HE_OK and if it is still in progress 
it returns HE_IoInProgress. 

HeDelay() 
HE_DWORD HeDelay(HE_DWORD wait); 

Platform independent delay routine 

wait  time in milliseconds to wait for 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

HeReset() 
HE_DWORD HeReset(HE_HANDLE hDevice); 

Reset the device opened on hDevice. In ‘C4x terms this would reset a Comport on a 
Board NOT the board itself 

hDevice is the handle returned from HeOpen. 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

HeReset1() 
HE_DWORD HeReset1(HE_HANDLE hDevice, HE_DWORD ResetHold); 

Reset the device opened on hDevice. In ‘C4x terms this would reset a Comport on a 
Board NOT the board itself - the reset will be help asserted for ResetHold ms. 

This routine supersedes HeReset() which uses an arbitrarily short reset hold time 

hDevice is the handle returned from HeOpen. 

ResetHold time in ms to hold reset asserted 



                                                                                                                           

28 HUNT ENGINEERING API REFERENCE MANUAL 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

HeInitIoStatus 
HE_DWORD HeInitIoStatus(HE_HANDLE hDevice, HE_IOSTATUS *pIoStatus) 

Initialise the HEIOSTATUS object - this is REQUIRED before use in HeRead() or 
HeWrite(). If it has not been called then the behaviour of HeRead(), HeWrite, 
HeWaitForIo() and HeTestIo() is unpredictable and insupportable. 
hDevice is the handle returned from HeOpen. 

*pIoStatus is a pointer to the IoStatus Handle. It is used to obtain the status of 
the outstanding I/O or to wait for its completion. 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

HeWaitForIo() 
HE_DWORD HeWaitForIo(HE_HANDLE hDevice HE_IOSTATUS IoStatus,); 

Wait until a Read/Write operation is complete 
hDevice is the handle returned from HeOpen. 

IoStatus is the IoStatus handle. It is used to obtain the status of the 
outstanding I/O or to wait for its completion. 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

HeTestIo() 
HE_DWORD HeTestIo(HE_HANDLE hDevice, HE_IOSTATUS IoStatus); 

Check whether the I/O has finished 
hDevice is the handle returned from HeOpen. 

IoStatus is the IoStatus handle. It is used to obtain the status of the 
outstanding I/O or to wait for its completion. 

return HE_OK is returned when the call was successful, and I/O was 
completed. HE_IoInProgress is returned when the call was 
successful, but when I/O was not yet completed. When the call was 
not successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). In particular 
if the I/O is complete it will return HE_OK and if it is still in progress 
it returns HE_IoInProgress. 



                                                                                                                           

29 HUNT ENGINEERING API REFERENCE MANUAL 

HeErr2Text() 
void HeErr2Text(HE_DWORD errcode, char *errtxt); 

Converts an error code defined in the API into an ASCII text string suitable for output to a 
terminal or log file. 
errcode is an error code returned by one of the routines. 

*errtxt is a pointer to the text buffer - this should be at least 80 BYTES long 

HeGetIoGranularity() 
HE_DWORD HeGetIoGranularity(HE_HANDLE hDevice, HE_DWORD *granularity); 

Will return the granularity required for I/O buffers. For the 'C4x this is 4 bytes, 
hDevice is the handle returned from HeOpen. 

granularity is the number of bytes required for I/O on this device - use this in 
conjunction with the error message HE_IllegalCount 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

The following functions support a General Buffer allocation scheme which will ensure that 
the Device Driver and User Program have a consistent view of the buffers location in 
memory. 

HeGetBoardInfo() (HERON carriers only) 
HE_DWORD HeGetBoardInfo(char *BoardType, HE_WORD BoardId, HE_DWORD 
*information); 

This function will return information for the specified board. 

BoardType Legacy boards, such as the HEPC2E and HEPC3B, don’t support this 
function, but C6x carrier boards (such as the HEPC8 and HEPC9) do. 

BoardId is used to identify the required board of this type where more than 1 is 
supported. 

information is a pointer to an array whose length is defined according to the board 
information function required. The currently supported board 
information function types are: 

  HE_Get_ModuleTypes Return module types 

  When calling this function, the first element of the array pointed to by 
information must contain the function type listed above. 

  You must ensure the array is at least 21 HE_DWORDS in size. 

  For the function type HE_Get_ModuleTypes, the returned 
information is as follows: 

     information[1] = A module is fitted to slot 1 of the carrier 

     information[2] = The module in slot 1 has a processor 



                                                                                                                           

30 HUNT ENGINEERING API REFERENCE MANUAL 

     information[3] = The module in slot 1 has a serial bus connection 

     information[4] = The module in slot 1 supports JTAG 

     information[5] = The data-path width for the  module in slot 1 

     information[6] = A module is fitted to slot 2 of the carrier 

     information[7] = The module in slot 2 has a processor 

     information[8] = The module in slot 2 has a serial bus connection 

     information[9] = The module in slot 2 supports JTAG 

     information[10] = The data-path width for the  module in slot 2 

     information[11] = A module is fitted to slot 3 of the carrier 

     information[12] = The module in slot 3 has a processor 

     information[13] = The module in slot 3 has a serial bus connection 

     information[14] = The module in slot 3 supports JTAG 

     information[15] = The data-path width for the  module in slot 3 

     information[16] = A module is fitted to slot 4 of the carrier 

     information[17] = The module in slot 4 has a processor 

     information[18] = The module in slot 4 has a serial bus connection 

     information[19] = The module in slot 4 supports JTAG 

     information[20] = The data-path width for the  module in slot 4 

return HE_OK is returned when the call was successful. If this function is 
called for a BoardType that is not supported (i.e any board that is 
not a HERON carrier), the function will return HE_Unsupported. 
When the call was not successful, an error code is returned. For 
details, see the “Status Codes” section elsewhere in this chapter.  

HeAlloc() 

HE_DWORD HeAlloc(HE_MEMHANDLE *memHandle, HE_DWORD MessageSize); 

Allocates a buffer for use by the HeLock() routine, note this does not provide an address 
for the buffer, that will be generated by HeLock(). 

MessageSize Number of BYTES to allocate 

*memHandle pointer to the Memory Handle 
return HE_OK is returned when the call was successful. When the call was not 

successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

HeFree() 

HE_DWORD HeFree(HE_MEMHANDLE *memHandle); 

Release the buffer allocated by HeAlloc(). 



                                                                                                                           

31 HUNT ENGINEERING API REFERENCE MANUAL 

memHandle pointer to the Memory Handle returned by HeAlloc() 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

HeLock() 

HE_DWORD HeLock(HE_MEMHANDLE memHandle, void *tmpptr); 

Generates an address for the buffer allocated by HeAlloc() and ensure that the buffers 
address will not be changed 

*tmpptr address of the buffer allocated by HeAlloc() 

memHandle Memory Handle returned by HeAlloc() 

return  HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

HeUnlock() 

HE_DWORD HeUnlock(HE_MEMHANDLE memHandle); 

Releases the address generated for the buffer allocated by HeLock() 

memHandle Memory Handle returned by HeAlloc() 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

HeConfig() 

HE_DWORD HeConfig(HE_HANDLE hDevice, HE_DWORD *Config); 

Read the state of the Config Signal from the module carrier 

hDevice is the handle returned from HeOpen(). 

Config pointer to a variable to receive the status of Config -  

 1 ⇒ Config is asserted by at least one TIM on the module carrier 

 0 ⇒ Config has been released by all of the TIMs 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). Reading of 
the Config bit is not supported on all module carriers and so the 
return code should be checked for errors before using attempting to 
use the Config bit any further. 



                                                                                                                           

32 HUNT ENGINEERING API REFERENCE MANUAL 

HeJtagWrite() 

HE_DWORD HeJtagWrite(HE_HANDLE hDevice, HE_DWORD PortData); 

hDevice is the handle returned from HeOpen. 

PortData is a simple encoding of the offset from the Jtag base address to write 
to and the data to write to that offset - the Port offset is in the high 16 
bits and the data in the low 16 bits 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

PLEASE NOTE that JTAG is not supported under VxWorks. 

HeJtagRead() 

HE_DWORD HeJtagRead(HE_HANDLE hDevice, HE_DWORD *PortData); 

hDevice is the handle returned from HeOpen. 

*PortData is a pointer to the encoded Jtag data. On calling the routine the Jtag 
offset should be in the high 16 bits (as it is for HeJtagWrite), the 
low 16 bits is undefined. On return the data read will be in the low 16 
bits and the high 16 bits is undefined 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

PLEASE NOTE That JTAG is not supported under VxWorks. 

HeGetLastOsError() 

HE_DWORD HeGetLastOsError(void *hand); 

*hand  is a pointer to a HUNT ENGINEERING API handle: a device (HE_ 
HANDLE) or a memory handle (HE_MEMHANDLE). The function 
will return the operating system error code of the last HUNT ENGI-
NEERING API call done before a call to this function. 

return The return value is an O/S specific error code.  

The HUNT ENGINEERING API may run into broadly two types of errors: operating 
system errors (for example, a file cannot be opened or a device cannot be found), or API 
specific errors (for example, using a wrong handle or calling HeWrite with a Count that is 
not a multiple of 4). In both cases, a HUNT ENGINEERING API function will return an 
error (return value unequal to HE_OK). If the error resulted from an unsuccessfull opera-
ting system call, then this function will specify exactly what error occurred. For example, if 
you try to open a board that isn’t installed, HeOpen will return error HE_OpenFailed, and 
HeGetLastOsError() will then return 2 (“No such file or directory”), under Windows. 



                                                                                                                           

33 HUNT ENGINEERING API REFERENCE MANUAL 

HeHSBSendMessageEx() 
HE_DWORD HeHSBSendMessageEx(HE_HANDLE hDevice, HE_BYTE msg_type, 
                            HE_WORD tgbd, HE_BYTE slot, 
                            void *data, HE_DWORD size, 
                            int msec); 

This function sends a message over the serial bus. The message is addressed to serial bus 
device slot. The message itself is an array, pointed to by data and is size bytes long. If 
the message cannot be sent to slot within msec milli-seconds, the function will time out. 
The parameter msg_type is the message type. For example, to ask a HERON processor 
module for module information, msg_type is 1, data is NULL and size is 0.  

There is also a similar function called HeHSBSendMessage. This function doesn’t have the 
tgbd parameter. HeHSBSendMessage assumes that slot is on the same board as 
hDevice. The HeHSBSendMessageEx function allows access to any slot, even on other 
boards. (Assuming that an HSB connection exists between the boards.) 

HeHSBSendMessageEx, and its predecessor HeHSBSendMessage, are used to send HUNT 
HSB protocol messages. A full list of HUNT HSB protocol message types can be found in 
the HSB specification document. (The file is named ‘hsbspec.pdf’ and usually located on 
the HUNT CD in the \web\pdfs\tech directory. You can also use the HUNT CD front-
end, “User Manuals”  “Technology Documents”  “HERON Serial Bus Specification”. 
Review Appendix 1.) 

hDevice is the handle returned from HeOpen. (using device name ‘hsb’ or 3). 

msg_type is the message type. Some of the message types can be found defined 
in the serial bus section in this manual. Message types are special to 
HUNT ENGINEERING serial bus implementations. If you create 
your own serial bus functions (eg using the HERON-API serial bus 
functions) you may want to create your own message types.  

tgbd  is the board switch of the board on which the target slot resides. The 
tgbd parameter together with the slot parameter is used to create an 
hsb id. (Bits 0..2 are slot id, bits 3..6 are target board switch.) 

slot  is the serial bus device the message is aimed at. Use the slot number 
where the HERON module is plugged in as the id. For example, to 
send a serial bus message to a HERON module in slot 1 of a HEPC8 
board, used slot=1.  

data  is the pointer to the serial bus message. Not all serial bus messages use 
a data array. Some messages consist only of a message type. An exam-
ple is the processor module query (msg_type=1). 

size  is the the size of the serial bus message, in bytes. 

msec  is the number of milli-seconds after which the function times out. 

HeHSBReceiveMessageEx() 
HE_DWORD HeHSBReceiveMessageEx(HE_HANDLE hDevice, HE_BYTE_*msg_ 
       type, HE_WORD tgbd, HE_BYTE slot, 
                               void *data, HE_DWORD size, 
                               HE_DWORD *read, int msec); 

This function receives a message over the serial bus. The message is expected to be received 



                                                                                                                           

34 HUNT ENGINEERING API REFERENCE MANUAL 

from serial bus device tgbd<<3+slot. The message itself is to be stored in an array 
pointed to by data and is expected to be size bytes long. If you don’t know the exact 
size, take a reasonable number larger than expected. If the message cannot be received from 
tgbd<<3+slot within msec milli-seconds, the function will time out. The parameter 
msg_type is the message type of the message received. For example, to receive HERON 
processor module information after a query, msg_type will be 2. 

There is also a similar function called HeHSBReceiveMessage. This function doesn’t have 
the tgbd parameter. HeHSBReceiveMessage assumes that slot is on the same board as 
hDevice. The HeHSBReceiveMessageEx function allows access to any slot, even on other 
boards. (Assuming that an HSB connection exists between the boards.) 

HeHSBReceiveMessageEx, and its predecessor HeHSBReceiveMessage, are used to receive 
HUNT HSB protocol messages. A full list of HUNT HSB protocol message types can be 
found in the HSB specification document. (The file is named ‘hsbspec.pdf’ and usually 
located on the HUNT CD in the \web\pdfs\tech directory. You can also use the HUNT 
CD front-end, “User Manuals”  “Technology Documents”  “HERON Serial Bus 
Specification”. Review Appendix 1.) 

hDevice is the handle returned from HeOpen. (using device name ‘hsb’ or 3). 

msg_type is the message type received. Some of the message types can be found 
defined in the serial bus section. Message types are special to HUNT 
ENGINEERING serial bus implementations. If you create your own 
serial bus functions (eg using the HERON-API serial bus functions) 
you may want to create your own message types.  

tgbd  is the board switch of the board on which the target slot resides. The 
tgbd parameter together with the slot parameter is used to create a 
heronid. (Bits 0..2 are slot id, bits 3..6 are target board switch.) 

slot  is the serial bus device the message is to be received from. Use the slot 
number where the HERON module is plugged in as the id. For 
example, to receive a serial bus message from a HERON module in 
slot 1 of a HEPC8 board, used slot=1.  

data  is the pointer to a buffer to receive the serial bus message in.  

size  is the the size of the expected size of the message, in bytes. Make sure 
that data points to an array that is at least this size (in bytes). 

read  is the the size of the actual message received. 

msec  is the number of milli-seconds after which the function times out. 

HeHSBStartSendMessageEx() 
HE_DWORD HeHSBStartSendMessageEx(HE_HANDLE hDevice, 
                                 HE_WORD tgbd, HE_BYTE slot, 
                                 int msec); 

This function prepares to send a message over the serial bus. After calling this function 
successfully, use HeHSBSendMessageDataEx to send the actual message. The message is 
addressed to serial bus device tgbd<<3+slot. 

There is also a similar function called HeHSBStartSendMessage. This function doesn’t have 
the tgbd parameter. HeHSBStartSendMessage assumes that slot is on the same board as 



                                                                                                                           

35 HUNT ENGINEERING API REFERENCE MANUAL 

hDevice. The HeHSBStartSendMessageEx function allows access to any slot, even on 
other boards. (Assuming that an HSB connection exists between the boards.) 

hDevice is the handle returned from HeOpen. (using device name ‘hsb’ or 3). 

tgbd  is the board switch of the board on which the target slot resides. The 
tgbd parameter together with the slot parameter is used to create a 
heronid. (Bits 0..2 are slot id, bits 3..6 are target board switch.) 

slot  is the serial bus device the message is aimed at. Use the slot number 
where the HERON module is plugged in as the id. For example, to 
send a serial bus message to a HERON module in slot 1 of a HEPC8 
board, used slot=1.  

msec  is the number of milli-seconds after which the function times out. 

HeHSBSendMessageDataEx() 
HE_DWORD HeHSBSendMessageDataEx(HE_HANDLE hDevice, 
                                void *data, HE_DWORD size, 
                                int msec); 

This function sends a message over the serial bus. The message is an array, pointer to by 
data and is size bytes long. If the message cannot be sent to tgbd<<3+slot (as 
specified by HeHSBStartSendMessageEx) within msec milli-seconds, the function will time 
out. The first two bytes of the message must be the message type and the serial bus return 
address. For example, to ask a HERON processor module for module information, the 
message type is 1. The serial bus return address is always (board number<<3)+5. For 
example, for HEPC8 number 0, the return address is 5. For an HEPC8 number 1, the 
return address is 13 (0xd). 

There is also a similar function called HeHSBSendMessageData. This function assumes that 
the hsb device (identified by slot in HeHSBStartSendMessage) is on the same board as 
hDevice. The HeHSBStartSendMessageEx function allows access to any slot, even on 
other boards. (Assuming that an HSB connection exists between the boards.) 

hDevice is the handle returned from HeOpen. (using device name ‘hsb’ or 3). 

data  is the pointer to the serial bus message. The first byte in the message 
must be the message type. The second byte in the array must be the 
return address (5+(board number<<3). Not all serial bus messages 
use a data array larger than size 2. Some messages consist only of a 
message type and a return address. An example is the processor 
module query (message type is 1). 

size  is the the size of the serial bus message, in bytes. 

msec  is the number of milli-seconds after which the function times out. 

HeHSBEndOfSendMessageEx() 
HE_DWORD HeHSBEndOfSendMessageEx(HE_HANDLE hDevice, int msec); 

This function signals the end of a serial bus send message transfer. It must be used after 1 
or more calls to HeHSBSendMessageDataEx. Calling this function will free the serial bus so 
that other serial bus devices can access it. 

There is also a similar function called HeHSBEndOfSendMessage. This function assumes 



                                                                                                                           

36 HUNT ENGINEERING API REFERENCE MANUAL 

that the hsb device (identified by slot in HeHSBStartSendMessage) is on the same board 
as hDevice. The HeHSBStartSendMessageEx function allows access to any slot, even on 
other boards. (Assuming that an HSB connection exists between the boards.) 

hDevice is the handle returned from HeOpen. (using device name ‘hsb’ or 3). 

msec  is the number of milli-seconds after which the function times out. 

HeHSBStartReceiveMessageEx() 
HE_DWORD HeHSBStartReceiveMessageEx(HE_HANDLE hDevice,  
                                    HE_DWORD *id, int msec); 

This function prepares to receive a message over the serial bus. Parameter id is the serial 
bus device the incoming message is aimed at. If no message is received within msec milli-
seconds, the function will time out. 

There is also a similar function called HeHSBStartReceiveMessage. This function is actually 
the same as HeHSBStartReceiveMessageEx. The HSB Ex functions allow access to any 
slot, even on other boards. (Assuming that an HSB connection exists between the boards.) 
However, the HSB receive functions don’t know where a message comes from, so in effect 
HeHSBStartReceiveMessage is identical to HeHSBStartReceiveMessageEx. 

hDevice is the handle returned from HeOpen. (using device name ‘hsb’ or 3). 

id  is the serial bus device the incoming message is addressed to . 

msec  is the number of milli-seconds after which the function times out. 

HeHSBReceiveMessageDataEx () 
HE_DWORD HeHSBReceiveMessageDataEx(HE_HANDLE hDevice, 
                                   void *data, HE_DWORD size, 
                                   HE_DWORD *read, int msec); 

This function receives a message over the serial bus. The message is to be stored in the 
array pointed to by data and is expected to be size bytes long. If you don’t know the 
exact size, take a reasonable number larger than expected. If a message cannot be received 
within msec milli-seconds, the function will time out. The first byte in the message received 
will be the message type. For example, to receive HERON processor module information 
after a query, the message type will be 2.  

There is also a similar function called HeHSBReceiveMessageData. This function is actually 
the same as HeHSBReceiveMessageDataEx. The HSB Ex functions allow access to any 
slot, even on other boards. (Assuming that an HSB connection exists between the boards.) 
However, the HSB receive functions don’t know where a message comes from, so in effect 
HeHSBReceiveMessageData is identical to HeHSBReceiveMessageDataEx. 

hDevice is the handle returned from HeOpen. (using device name ‘hsb’ or 3). 

data  is the pointer to a buffer to receive the serial bus message in.  

size  is the the size of the expected size of the message, in bytes. Make sure 
that data points to an array that is at least this size (in bytes). 

read  is the the size of the actual message received. 

msec  is the number of milli-seconds after which the function times out. 



                                                                                                                           

37 HUNT ENGINEERING API REFERENCE MANUAL 

HeHSBEndOfReceiveMessageEx() 
HE_DWORD HeHSBEndOfReceiveMessageEx(HE_HANDLE hDevice,int msec); 

This function signals the end of receiving one full message over the serial bus. To receive 
more messages, you would need to call HeHSBStartReceiveMessage again. 

There is also a similar function called HeHSBEndOfReceiveMessage. This function is 
actually the same as HeHSBEndOfReceiveMessageEx. The HSB Ex functions allow access 
to any slot, even on other boards. (Assuming that an HSB connection exists between the 
boards.) However, the HSB receive functions don’t know where a message comes from, so 
in effect HeHSBEndOfReceiveMessage is identical to HeHSBEndOfReceiveMessageEx. 

hDevice is the handle returned from HeOpen. (using device name ‘hsb’ or 3). 

msec  is the number of milli-seconds after which the function times out. 

HeHSBInit() 
HE_DWORD HeHSBInit(HE_HANDLE hDevice, HE_BYTE hsb_id); 

This function initialises the serial bus. It has to be called after a system reset (HeReset()), or 
after an call to an HeOpen function but without resettting the board. 

hDevice is the handle returned from HeOpen. 

hsb_id is the serial bus device ID of the motherboard. On an HEPC8, for 
example, this is always 5. But when the HEPC8 board switch is not 0, 
but for example 2, then the device ID is 5+(2<<3) = 21 (hex 0x15). 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned. For details, see the “Status 
Codes” section elsewhere in this chapter. An O/S specific error code 
can be found by calling GetLastOsError(hDevice). 

HeHSBMaster() 
HE_DWORD HeHSBMaster(HE_HANDLE hDevice,  
                     HE_BYTE hsb_id, int msec); 

This function tries to make the user application master of the serial bus. You must first 
become a master before you can write to the serial bus. Typically you call HeHSBMaster() 
immediately after a call to HeHSBinit(). The function waits at most msec milliseconds to 
become a master on the serial bus.  

hDevice is the handle returned from HeOpen. 

hsb_id is the serial bus device ID that you want to write to. On an HEPC8, 
for example, slot 1 has id 1, slot 2 has id2, slot 3 has id 3 and slot 4 has 
id 4.  When the HEPC8 board switch is not 0, but for example 5, then 
slot 1 has id 1+(5<<3) = 41, slot 2 has id 2+(5<<3) = 42 and so on. 

msec  time in milliseconds that the function waits at most to become master. 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned (HE_TimeOut if after msec it 
cannot become master of the serial bus, or HE_HSBMasterFailed in 
the event of a driver problem). For details, see the “Status Codes” 
section elsewhere in this chapter. An O/S specific error code can be 



                                                                                                                           

38 HUNT ENGINEERING API REFERENCE MANUAL 

found by calling GetLastOsError(hDevice). 

HeHSBSlave() 
HE_DWORD HeHSBSlave(HE_HANDLE hDevice, int msec); 

This function tries to release mastership of the serial bus. You must first become a master 
before you can write to the serial bus. Typically you call HeHSBSlave() after a call to 
HeHSBMaster followed by one or more HeWrite calls. The function serves to release 
“mastership” of the serial bus. You wouldn’t need to call this function if you’re not the 
master of the serial bus, e.g. immediately after a call to HeReset(). The function waits at 
most msec milliseconds to release “mastership” of the serial bus.  

hDevice is the handle returned from HeOpen. 

msec  time in milliseconds that the function waits at most to release “master-
ship”. 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned (HE_TimeOut if after msec it 
cannot become master of the serial bus, or HE_HSBSlaveFailed in the 
event of a driver problem). For details, see the “Status Codes” section 
elsewhere in this chapter. An O/S specific error code can be found by 
calling GetLastOsError(hDevice). 

HeHSBListen() 
HE_DWORD HeHSBListen(HE_HANDLE hDevice, HE_DWORD *id, int msec); 

This function waits for the start of a message to arrive. Typically you call HeHSBListen() 
immediately after a call to HeHSBSlave(). The function waits at most msec milliseconds to 
wait for a message. Upon finding the start of a message, the id parameter will hold the 
serial bus id from to which the message is directed.  

hDevice is the handle returned from HeOpen. 

id  is the serial bus device ID that a message is destined for. If it’s for you, 
then id is identical to the hsb_id value you used in HeHSBinit(). 

msec  time in milliseconds that the function waits at most. 

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned (HE_TimeOut if after msec it 
cannot become master of the serial bus, or HE_HSBListenFailed in 
the event of a driver problem). For details, see the “Status Codes” 
section elsewhere in this chapter. An O/S specific error code can be 
found by calling GetLastOsError(hDevice). 

HeHSBFlush() 
HE_DWORD HeHSBFlush (HE_HANDLE hDevice, HE_DWORD *read); 

This function flushes the HSB read state. Before you close the HSB, first call this function. 
It will ensure that any remaining bytes will be read. If this is not done, the HSB may be left 
in a state that prohibits any other device using the HSB. Level 2 and 3 HSB functions call 
this function automatically (in HeHSBEndOfReceiveMessage and HeHSBReceiveMessage). 
You only need to use HeHSBFlush if you use level 1 HSB functions to access the HSB. 



                                                                                                                           

39 HUNT ENGINEERING API REFERENCE MANUAL 

hDevice is the handle returned from HeOpen. 

read  the number of bytes flushed.  

return HE_OK is returned when the call was successful. When the call was not 
successful, an error code is returned (HE_HSBFlushFailed in the 
event of a driver problem). For details, see the “Status Codes” section 
elsewhere in this chapter. An O/S specific error code can be found by 
calling GetLastOsError(hDevice). 

HeGetDeviceInfo() 
HE_DWORD HeGetDeviceInfo(HE_HANDLE hDevice, char *BoardDescr, 
                         HE_WORD *BoardId, HE_WORD *DeviceId); 

This function returns the board-type, board number and device with which the handle was 
opened. Parameters BoardDescr, BoardId and DeviceId must not be NULL.  

hDevice is the handle returned from HeOpen. 

BoardDescr The board description with which the handle was opened. For 
example, for an HEPC9, “hep9a” will be written into BoardDescr. 

BoardId The board number with which the handle was opened.  

DeviceId The device id with which the handle was opened. Possible values are 
listed in ‘heapi.h’: FifoA (0), FifoB (1), etc.  

Status Codes. 

As the HUNT ENGINEERING API continues to develop, more status codes may be 
added. The include file “heapi.h” will always have a full, complete, list of status codes. In 
this include file, every status (or error) code will be #defined as a “mnemonic”. Hopefully 
the “mnemonic” will give a sufficiently good description to indicate the nature of the error. 

Mnemonic Value Description 
HE_OK                 0x0000 No Error. 
HE_SIG_FAIL 0x0001 Not used. 
HE_HEPC3_DETECT_FAIL 0x0002 Failed to detect HEPC3 device on the PCI bus. (2) 
HE_CONFIG_READ_FAIL 0x0003 Failed to read a configuration space register. (2) 
HE_COMMAND_SET_FAIL 0x0004 Failed to set required values in PCI Command 

Register. (2) 
HE_STATUS_CHECK_FAIL  0x0005 Unexpected value in the PCI Status Register. (2) 
HE_Base1_NOT_IO 0x0006 Expected HEPC3 PCI config register base 1 to be 

in I/O space, but it wasn't. (2) 
HE_Base2_NOT_IO 0x0007 Expected HEPC3 PCI config register base 2 to be 

in I/O space, but it wasn't. (2) 
HE_Base3_NOT_IO 0x0008 Expected HEPC3 PCI config register base 3 to be 

in I/O space, but it wasn't. (2) 



                                                                                                                           

40 HUNT ENGINEERING API REFERENCE MANUAL 

HE_Base4_NOT_IO 0x0009 Expected HEPC3 PCI config register base 4 to be 
in I/O space, but it wasn't. (2) 

HE_Base5_NOT_IO 0x000a Expected HEPC3 PCI config register base 5 to be 
in I/O space, but it wasn't. (2) 

HE_Base6_NOT_IO 0x000b Expected HEPC3 PCI config register base 6 to be 
in I/O space, but it wasn't. (2) 

HE_NOTRAP_OPREG 0x000c Failed to trap access to HEPC3 Operations Register. 
(1) 

HE_NOTRAP_BDATA 0x000d Failed to trap access to HEPC3 Comport B Data 
register. (1) 

HE_NOTRAP_ACTRL 0x000e Failed to trap access to HEPC3 Comport A Control 
Register. (1) 

HE_NOTRAP_BCTRL 0x000f Failed to trap access to HEPC3 Comport B Control 
Register. (1) 

HE_No_String_IO 0x0010 No support to trap use of String I/O instructions 
(e.g. outsb). (1) 

HE_No_Rep_IO 0x0011 No Support to trap use of Rep I/O instructions (e.g. 
rep outsb). (1) 

HE_No_Addr_32_IO 0x0012 No Support to trap 32 bit I/O instructions. (1) 
HE_No_Reverse_IO 0x0013 No support for Reversed string I/O operations. (1) 
HE_CloseNotOpen 0x0014 Attempt to Close device that is already closed. 
HE_AlreadyOpenOther 0x0015 Attempt to Open a device someone else has open. 
HE_CloseNotOurs 0x0016 Attempt to close a device that someone else opened.
HE_IllegalBoard 0x0017 Board Id is invalid (board is not in the system). 
HE_IllegalDevice 0x0018 The board does not support the device. 
HE_NOTRAP_JTAG 0x0019 Failed to trap access to the Jtag register. (1) 
HE_UnexpectedIoTrap 0x001a Received a trap that we don't recognise. (1) 
HE_Unsupported 0x001b Unsupported Operation. 
HE_ReadTimeout 0x001c Where I/O is not supported by interrupts the I/O 

terminated because the routine exceeds a max. 
number of retries. 

HE_WriteTimeout 0x001d Where I/O is not supported by interrupts the I/O 
terminated because the routine exceeds a max. 
number of retries. 

HE_MMReadInProgress 0x001e A Master Mode Read was initiated when one was 
already in progress - this should never happen. (3) 

HE_MMWriteInProgress 0x001f A Master Mode Write was initiated when one was 
already in progress - this should never happen. (3) 



                                                                                                                           

41 HUNT ENGINEERING API REFERENCE MANUAL 

HE_FailedAllocatePer
VM 

0x0020 Not used. 

HE_HEPC8_DETECT_FAIL 0x0021 RTOS32 API: cannot detect HEPC8. 
HE_MMAP_FAIL 0x0022 RTOS32 API: unable to map board into virtual 

address space (GetDevicePtr failed). 
HE_IoInProgress 0x0023 A Read or Write is still in progress - returned by 

HeRead(),  HeWrite() or HeTestIo(). 
HE_UnknownCommand 0x0026 Not used. 
HE_NOTRAP_Interrupt 0x0028 Not used. 
HE_AlreadyOpenUs 0x0029 Attempt to open a device we already opened. 
HE_OnlyBNoInterrupts 0x002b Not used. 
HE_UnlockNotLocked 0x002f Not used. 
HE_PbUnlockNotLocked 0x0031 Not used. 
HE_NULLCallbackAddre
ss 

0x0033 Not used. 

HE_ReadContinuousOnl
yOnMM 

0x0035 Not used. 

HE_FailedAllocateRea
dPhysical 

0x0037 Not used. 

HE_FailedAllocateIRQ
9AtCriticalInit 

0x0039 Not used. 

HE_Fatal 0x003a Unknown but fatal error. 
HE_IOLIB_INIT_FAIL 0x003f VxWorks API: unable to initialise configuration 

access-method and addresses for PCI bus. 
HE_HEPC9_DETECT_FAIL 0x0040 RTOS32 API: cannot detect HEPC9. 
HE_Hep3aVxdMissing 0x1002 Not used. 
HE_AllocFailed 0x1003 Failed to allocate memory, or size is 0. 
HE_LockFailed 0x1025 Attempt to lock memory handle that was 

unsuccessfully created by HeAlloc. 
HE_OpenFailed 0x1027 Open Failed. Unable to open device driver, typically 

because board isn’t there, incorrect board number, 
or driver is not installed. 

HE_CloseFailed 0x1028 Close Failed. Device driver says it can’t close the 
handle. Use HeGetLastOsError to get an OS 
specific error code. 

HE_NoMMBuffersSpecif
ied 

0x1100 RTOS32 API: you try to open a fifo with 
MasterMode, but you have not specified a 
MasterMode buffer size in the cfg file. 

HE_MMBufferSizeTooLa
rge 

0x1101 Not used. 

HE_MMBufAddrTooHigh 0x1102 Not used. 



                                                                                                                           

42 HUNT ENGINEERING API REFERENCE MANUAL 

HE_MMBufferSizeTooSm
all 

0x1103 RTOS32 API: MasterMode buffersize defined in 
your cfg file must be 4096 bytes or higher. 

HE_IllegalCount 0x2001 The I/O operation specified an illegal number of 
bytes - e.g. size must be multiples of 4 bytes for a 
Fifo - see  HeGetIoGranularity(). 

HE_IllegalBoardType 0x2002 The function you used does not support the board 
you specified. 

HE_UnknownError 0x2003 Unknown error. Try checking the error returned by 
the Operating System by using  
HeGetLastOsError(). Might also indicate a 
problem with the device driver. 

HE_FreeFailed 0x2004 Not used. 
HE_UnlockFailed 0x2005 Attempt to unlock memory handle that was 

unsuccessfully created by HeAlloc. 
HE_InvalidBuffer 0x2006 Indicates that the API library has given the device 

driver too small a buffer to execute an i/o request. 
May be caused by corrupted driver or library, or a 
software bug. 

HE_UnsupportedOperat
ingSystem 

0x2007 The API library does not support the current 
Operating system. 

HE_ResetFailed 0x2008 Attempt to reset the board failed: unable to 
communicate with the device driver. 

HE_JtagReadFailed 0x2009 Attempt to read from JTAG failed: unable to 
communicate with the device driver. 

HE_JtagWriteFailed 0x200a Attempt to write to JTAG failed: unable to 
communicate with the device driver. 

HE_InitIoStatusFaile
d 

0x200b Attempt to Initialise an IoStatus block failed. 
Typically because an event or semaphore could not 
be created or initialised.  

HE_WaitForIoFailed 0x200c The semaphore used to wait for completion of the 
read or write transfer has returned an error. Use 
HeGetLastOsError()to find out which. 

HE_TestIoFailed 0x200d The semaphore used to wait for completion of the 
read or write transfer has returned an error. Use 
HeGetLastOsError()to find out which. 

HE_GetIoGranularityF
ailed 

0x200e Attempt to get granularity failed: cannot 
communicate with the device driver. 

HE_GetDriverStatusFa
iled 

0x200f Attempt to get driver status failed: cannot 
communicate with the device driver, or the function 
is not supported on this OS. 



                                                                                                                           

43 HUNT ENGINEERING API REFERENCE MANUAL 

HE_ReadFailed 0x2010 HeRead failed. Communication with the device 
driver failed, or an OS specific operation failed, such 
as semaphore or event creation/ initialisation. 
HeGetLastOsError() may tell more. 

HE_WriteFailed 0x2011 HeWrite failed. Communication with the device 
driver failed, or an OS specific operation failed, such 
as semaphore or event creation/initialisation. 
HeGetLastOsError() may tell more. 

HE_ConfigFailed 0x2012 HeConfig failed. Communication with the device 
driver failed, or config is not supported for that 
board or operating system. Use 
HeGetLastOsError() to find out more. 

HE_SignalFailure 0x2013 A general error from routines that are using 
Semaphores or Events. Use HeGetLast-
OsError() to find out more. 

HE_WaitEventFailed 0x2014 A general error from routines and threads that are 
waiting for Semaphores or Events. Use 
HeGetLastOsError() to find out more. 

HE_CreateEventFailed 0x2015 A general error from routines and threads that failed 
to create a Semaphore or Event. Use 
HeGetLastOsError() to find out more. 

HE_ClearEventFailed 0x2016 A general error from routines and threads that failed 
to reset a Semaphore or Event. Use 
HeGetLastOsError() to find out more. 

HE_IllegalHandle 0x2017 The function you used does not support the device 
you specified. 

HE_UnableToCreateOpe
nLock 

0x2018 When using the underlying file system to enforce 
exclusive access to a device, either an error occurred 
in creating the file or the device is actually already 
open! 

HE_ThreadTermination
Error 

0x2019 Where underlying threads are used an error occurred 
terminating a thread when closing a device - see 
O/S specific error 

HE_ThreadTerminated 0x201a If a thread is successfully terminated on a close this 
is the status code it will be given - you should never 
see this as you should never close with outstanding 
I/Os. 

HE_UnableToCloseLock 0x201b When using the underlying file system to enforce 
exclusive access to a device, an error occurred in 
closing the file. 



                                                                                                                           

44 HUNT ENGINEERING API REFERENCE MANUAL 

HE_VddAttachFailed 0x201c When a DOS program is trying to attach to a Virtual 
Dos Driver (e.g. HENVDD) as a result of a call to 
HeOpen() in HEXDRV.LIB it can fail - this call will 
be returned from HeOpen() and hDevice-
>LastOsError will be set to the failure code - 
These are probably: - 
1. DLL not found - i.e. HENVDD is probably not 
installed! 
2. Dispatch routine not found 
3. Init Routine Not Found 
4. Insufficient Memory 

HE_VddNotAttached 0x201d An attempt by a DOS program on NT to use an 
API function without a successful attach to the Vdd 
by HeOpen() 

HE_ExceededMaxDevice
s 

0x201e Where the API has to restrict the maximum number 
of Open Devices and this is exceeded then the error 
will be returned from HeOpen(). In additional 
hDevice->LastOsError is set to the max that 
was exceeded. 

HE_NoInputAvailable 0x201f Used by HeTestInputAvailable() to indicate 
that the incoming fifo is empty. 

HE_NullHandlePointer 0x2020 A function is passed a pointer that is NULL. 
HE_InvalidHandlePoin
ter 

0x2021 A function is passed a pointer to an object that is 
invalid. The object is not an HE_HANDLE or an 
HE_IOSTATUS. 

HE_HandlePointerNotN
ull 

0x2022 For functions such as HeOpen, the device pointer 
must be initialised to NULL. This error indicates 
that a pointer passed to a function is not NULL. 
The idea is to avoid memory leaks by checking if a 
pointer, that is to be initialised, is not pointing to an 
existing object. It does this be checking if it’s NULL.

HE_FailedToAllocMemo
ryForHandle 

0x2023 In several different functions, the API tries to 
allocate memory for a handle. It the memory 
allocation fails, this error is returned. 

HE_HandleInUse 0x2024 Returned when a handle is to be created, but the 
current handle is already in use. 

HE_IoStatusChainNotE
mpty 

0x2025 Not used. 

HE_HandleNotInUse 0x2026 A handle (HE_HANDLE) is used that was not 
successfully opened, or has been closed. 

HE_ReadAlreadyInProg
ress 

0x2027 Used in single-threaded OS to indicate that a 
previous read transfer has not completed yet. 

HE_WriteAlreadyInPro
gress 

0x2028 Used in single-threaded OS to indicate that a 
previous write transfer has not completed yet. 



                                                                                                                           

45 HUNT ENGINEERING API REFERENCE MANUAL 

HE_FailedDeleteRing0
EventHandle 

0x2029 Not used. 

HE_VxDOpenFailed 0x202a Unable to communicate with the device driver Use 
HeGetLastOsError() to get an error code 
specific to the OS used. 

HE_VxDCloseFailed 0x202b Unable to communicate with the device driver Use 
HeGetLastOsError() to get an error code 
specific to the OS used. 

HE_VxDCreateFailed 0x202c Unable to connect with the device driver. The 
device driver is missing; or board-number or board-
type doesn’t identify an exisiting board. 

HE_UnknownOpenSwitch 0x202d Used by HeOpenS to indicate that a switch is not 
recognised or is not supported on the OS that you 
use. 

HE_ByteSwapNotSuppor
ted 

0x202e Returned when you specified to swap bytes on 
devices or boards that don’t support that. 

HE_ByteSwapFailed 0x202f Unable to communicate with the device driver Use 
HeGetLastOsError() to get an error code 
specific to the OS used. 

HE_IoCancelled 0x2030 If you close a device while a read or a write transfer 
has not completed yet, HeWaitForIo and HeTestIo 
may return this error code. 

HE_JtagDisabled 0x2031 With boards such as the HEPC2E you can 
configure the device driver to not use JTAG 
addresses. This error indicates that you try to open 
JTAG while you configured the device driver not to 
access any JTAG registers. 

HE_VTDVxdMissing 0x2032 Not used. 
HE_GetIntsStatusFail
ed 

0x2035 Unable to communicate with the device driver or a 
parameter passed to the function is NULL or the 
API is configured not to use the device driver. 

HE_ModTypeFailed 0x2036 Not used. 
HE_IntsStatusFailed 0x2037 Unable to communicate with the device driver Use 

HeGetLastOsError() to get an error code 
specific to the OS used. 

HE_PingIntFailed 0x2038 Interrupt test performed on Open Failed. 
HE_GetBoardInfoFaile
d 

0x2039 Unable to open device driver, typically because 
board isn’t there, incorrect board number, or driver 
is not installed, or unable to communicate with the 
device driver Use HeGetLastOsError() to get 
an error code specific to the OS used. 

HE_InterruptsDisable
d 

0x2040 Interrupt test performed on Open Failed, because 
the device driver is configured not to use interrupts. 



                                                                                                                           

46 HUNT ENGINEERING API REFERENCE MANUAL 

HE_TimeOut 0x2041 Functions that feature a timeout return this value if 
it cannot within the specified time. 

HE_VxDIsDisabled 0x2042 Not used. 
HE_HSBInitFailed 0x2043 Unable to communicate with the device driver Use 

HeGetLastOsError() to get an error code 
specific to the OS used. 

HE_HSBMasterFailed 0x2044 Unable to communicate with the device driver 
HeGetLastOsError() may tell more. 

HE_HSBSlaveFailed 0x2045 Unable to communicate with the device driver Use 
HeGetLastOsError() to get an error code 
specific to the OS used. 

HE_HSBListenFailed 0x2046 Unable to communicate with the device driver or a 
pointer is NULL or the HSB bus reports an error. 
HeGetLastOsError() may give an error code 
specific to the OS used. 

HE_HSBMsgNotForUs 0x2047 Used by HeHSBReceiveMessageEx() to indicate 
that a message was detected, but it was not 
addresses to us (ie the host device). 

HE_HSBReceiveMessage
Failed 

0x2048 Null pointer in a parameter passed to the
HeHSBReceiveMessageEx() function. 

HE_HSBMsgMissingByte
s 

0x2049 Expected to receive 2 protocol defined bytes, but 
when the message completed no or only 1 byte were 
received. May occur when you send a message to the 
‘wrong’ module and you expect a protocol reply 
from it. 

HE_HSBMsgWrongSlot 0x2050 Expected to receive a message from device 
identified by ‘slot’ and ‘tgbd’, but sender was a 
different device. 

HE_HSBReadFailed 0x2051 Unable to communicate with the device driver or a 
NULL pointer is passed to the function. 
HeGetLastOsError() may give an error code 
specific to the OS used. 

HE_HSBWriteFailed 0x2052 Unable to communicate with the device driver or a 
NULL pointer is passed to the function or the HSB 
bus reports an error. HeGetLastOsError() may 
give an error code specific to the OS used. 

HE_InvalidRemoteHand
le 

0x2053 Not used. 

HE_RemoteMallocFaile
d 

0x2054 Not used. 

HE_HSBStartSendMessa
ge Failed 

0x2055 Not used. 

HE_HSBSendMessageDat
a Failed 

0x2056 Not used. 



                                                                                                                           

47 HUNT ENGINEERING API REFERENCE MANUAL 

HE_HSBEndOfSendMessa
ge Failed 

0x2057 Not used. 

HE_HSBStartReceiveMe
ssage Failed 

0x2058 Not used. 

HE_HSBReceiveMessage
Data Failed 

0x2059 Not used. 

HE_HSBEndOfReceiveMe
ssage Failed 

0x205a Not used. 

HE_DetectOperatingSy
stem RemoteFailed 

0x205b Not used. 

HE_HSBNotExistID 0x205c Returned by HeHSBMaster() on HEPC8 boards if 
the target device doesn’t exist. 

HE_GetVersionFailed 0x206c Not used. 
HE_HSBFlushFailed 0x206d Unable to communicate with the device driver or a 

NULL pointer is passed to the function.  
HeGetLastOsError() may give an error code 
specific to the OS used. 

HE_HSBSurplusBytes 0x206e Returned when HSB is flushed and there were 
actually bytes read and discarded. The flush 
operation itself was successful, and this return value 
isn’t really an error code, but more like a remark or 
warning. 

HE_IoctlFailed 0x206f Unable to communicate with the device driver 
HeGetLastOsError() may give an error code 
specific to the OS used. 

HE_ReadBusy 0x2070 VxWorks API: used to indicate that a previous read 
transfer has not completed yet. 

HE_WriteBusy 0x2071 VxWorks API: used to indicate that a previous write 
transfer has not completed yet. 

HE_SemCreateFailed 0x2072 VxWorks API: used by HeOpen functions to 
indicate that the creation of an internal semaphore 
failed. 

HE_DeleteEventFailed 0x2073 Used by HeClose() if it was not able to close the 
handle to the device driver. 

HE_ParameterNullPoin
ter 

0x2074 Returned by HeGetBoardInfoEx() if a NULL 
pointer was passed to the function. 

HE_JTAGEnvVarParseFa
iled 

0x2080 An error occurred while parsing JTAG Master 
and/or Slave environment variables. 

HE_JtagConfigureFail
ed 

0x2100 Unable to communicate with the device driver 
HeGetLastOsError() may give an error code 
specific to the OS used. 

Notes 
(1) Direct I/O Errors. On some platforms there is additional support from the drivers to 



                                                                                                                           

48 HUNT ENGINEERING API REFERENCE MANUAL 

detect direct I/O operations to the device - i.e. not using the device driver. This is only 
supported on some ‘legacy’ C4x drivers. 

(2) PCI Specific. These errors are typically signalled where the driver has had to probe the 
PCI device directly rather than this being done by the Operating System. However some of 
the errors can occur even when the O/S has already obtained configuration information 
from the PCI device. 

(3) HEPC3 Specific. These error codes are specific to errors from the AMCC chip used 
on the HEPC3 

 



                                                                                                                           

49 HUNT ENGINEERING API REFERENCE MANUAL 

Heron Serial Bus (HSB) 

Introduction 

HSB stands for Heron Serial Bus. HSB is implemented on the HEPC8 and HEART based 
boards such as the HEPC9 and HECPCI9, but not on ‘legacy’ carrier boards such as the 
HEPC3 or the HEPC2E. Future HEART carrier boards will most certainly also implement 
HSB. Software support for HSB was introduced with API version 1.6. 

The main purpose for HSB is as a ‘control’ bus. For example, it can be used to interrogate 
HERON processor modules for their type (C6701, C6201, C6203, other). HSB is also used 
to configure HEART, and to upload FPGA bitstreams. 

But HSB can also be used by yourself, for general-purpose data exchange, or for your 
own control purposes. It must be remembered though that the HSB is not only slow, it is 
also arbitrated, so it cannot be relied upon for real time operation unless your system is 
carefully defined so that arbitration failures will never occur. 

HSB IDs or identifiers 
The Heron Serial Bus is a two-wire bus to which several ‘devices’ are attached. A ‘device’ 
may be a slot, a host interface, HEART, or something else. Each ‘device’ on the Heron 
Serial Bus has a unique ID that identifies it on the bus.  

The HSB ID, or identifier, is a 7-bit number. The highest 4 bits is the board number. The 
lowest 3 bits is the device specifier: 1 for slot 1, 2 for slot 2, 3 for slot 3, 4 for slot 4, 5 for 
the host interface, 6 for the inter-board connector and 7 for the HEART device on carriers 
such as the HEPC9. For example, identifier 0x4 would denote slot 4 on a board with board 
number 0, identifier 0x13 would denote slot 3 on a board with board number 2, and 
identifier 0x1F would denote the HEART device on a board with board number 3.  

HSB speed 
HSB is relatively slow (compared to FIFO speeds). On the HEPC8 it ticks at 100 kHz, and 
on the HEPC9 at 1 Mhz. Actual achievable bandwidths will be lower than the 100 Kb/sec 
and the 1 Mb/sec that you perhaps would expect, due to arbitration on the bus. 

HUNT HSB Protocol 
There are pre-defined messages that can be sent to ‘devices’ for certain purposes. These 
messages follow a protocol, ie the bytes in the message have some meaning and must 
follow certain rules. For example, to ask a processor module what type it is, 2 bytes must be 
sent to that module over HSB. The first byte must be ‘1’, the second byte the ‘return 
address’. The ‘return address’ is the HSB ID of the sender, in this case, as we are sending 
the HSB message from the host PC, that would be ‘5’ (assuming a board number of 0). 

In the HUNT HSB protocol, the first byte in a message is called the ‘message type’. A full 
list of HERON serial bus message types can be found in the HSB specification document. 
(The file is named ‘hsbspec.pdf’ and usually located on the HUNT CD in the 
\web\pdfs\tech directory. You can also use the HUNT CD front-end, “User Manuals”  
“Technology Documents”  “HERON Serial Bus Specification”. Review Appendix 1.) 



                                                                                                                           

50 HUNT ENGINEERING API REFERENCE MANUAL 

Non HSB Protocol Messages 
It is not the case that all HSB messages must follow the HUNT HSB protocol. Between 
two processor modules that run your own program you are completely free to exchange any 
HSB message you like. Similarly, between the host and a processor module that runs your 
own program you can exchange any HSB message you like. 

On processor modules, after a system reset, a tiny program is loaded from flash memory. 
One purpose of this program is to load a bootstream over a fifo. But it also contains code 
that answers HSB messages: type ‘1’ queries. Thus, as long as a processor module is not 
booted, you have to follow the HUNT HSB protocol and you can only send HSB messages 
that follow the HUNT HSB protocol to that module. But as soon as a processor module is 
booted with your own program, it can send or receive any HSB message – it’s completely 
up to you to program whatever HSB exchange you like. 

With devices such as a HEART device, or an inter-board connector, the HSB protocol 
response is hard-coded into the device. So you can only send HSB messages to a HEART 
device or an inter-board connector that follow the HUNT HSB protocol. 

FPGA modules fall somewhat in between the above to cases. FPGA’s are programmable, 
so there’s a degree of freedom, but also they must always respond in the same way to an 
update bitstream request, so that part is hard-coded. 

Accessing the Heron Serial Bus 
To write or read the serial bus, first open it as usual with an HeOpen call, use device name 
“hsb” or a digit 3. The API offers 3 types of access methods, called ‘level3’, ‘level 2’ and 
‘level 1’. The highest level is easiest to use but can only be used with HUNT HSB protocol 
messages. It consists only of two functions: send a message and receive a message. If the 
message is non HUNT HSB protocol or if the message should ideally be sent or received in 
parts, use ‘level 2’ functions. Each ‘level 3’ function can be functionally split up in 3 ‘level 2’ 
functions. The ‘level 3’ send message function splits into a ‘start send message’, a ‘send 
message data’, and an ‘end of send message’ function in ‘level 2’. There are (thus) 6 ‘level 2’ 
functions. 

The ‘level 1’ functions are low-level functions and you are advised not to use them. 

Level 3 Serial Bus functions 
These functions are “high level” serial bus functions that are easy to use, and you don’t 
need to know the particulars of how the serial bus works. But they can only be used for 
messages that follow the HUNT HSB protocol. 
As usual with the HUNT ENGINEERING API, to access the serial bus you need to open 
it. You can use a HeOpenS with device name “hsb” or a different open with device 3. The 
HUNT HSB protocol operates by first sending a message to a slot (a “request for some 
action”), where the message specifies what action is required of the module in that slot. E.g. 
for a processor module, a first byte of 1 specifies an information request. The processor 
module then responds by sending a message with its heron module type, processor type, 
etc. To send a message, the following function is provided: 

HeHSBSendMessageEx(HE_HANDLE hDevice, HE_BYTE msg_type, HE_WORD tgbd     
     HE_BYTE slot, void *data, HE_DWORD size, int msec); 

hDevice is the handle returned from the open call. The msg_type is the message type, eg 1 



                                                                                                                           

51 HUNT ENGINEERING API REFERENCE MANUAL 

when you ask a processor to return information. The tgbd parameter is the board switch of 
the board the target slot is on. Together with the slot parameter tgbd will be used to create 
an hsb id (tgbd<<3+slot). The slot parameter is the slot number where the module is fitted: 
1, 2, 3 or 4. The host device is seen as ‘slot’ 5, an inter-board connector as ‘slot’ 6, and the 
HEART device as ‘slot’ 7. The data pointer would point to any data you want to send. For 
processor queries this isn’t used, so fill the pointer as being NULL or set the size of the data 
array to 0 (size = 0). Finally, a message might timeout (eg the serial bus is busy for an 
extended period, perhaps it’s used by other modules in between them). You can specify 
how long at most you’re prepared to wait. 

To receive messages coming in, use the following function: 

HeHSBReceiveMessageEx(HE_HANDLE hDevice, HE_BYTE *msg_type,  
         HE_WORD tgbd, HE_BYTE slot, void *data, 
                                           HE_DWORD size, HE_DWORD *read, int msec); 

In this case, msg_type is the message type of the message received. The tgbd and slot 
parameters form the hsb-id of the device that you sent the original message to. The data 
buffer receives the incoming message. The size parameter tells the function how many bytes 
you expect. The read parameter tells you how many have actually been read. Finally, msec 
allows you to specify a timeout on how long at most you’re prepared to wait for a serial bus 
message. 

Example. Query a processor module using level ‘3’ functions 
void TestHSB(char *devname, int Board, int heronid) 
{ 
HE_BYTE msg_type, reply[8]; 
int  count, slot, tgbd; 
HE_DWORD switches[1]; 
 
switches[0]=HE_Switch_Last; 
hDevice = NULL; 
Status = HeOpenS(devname, (HE_WORD)Board, “hsb”, &hDevice, switches); 
if(Status != HE_OK) error(HeGetLastOsError(hDevice)); 
printf("HSB opened %lx\n", Status); 
 
slot   = heronid&0xf; 
tgbd   = (heronid>>4)&0xf; 
Status = HeHSBSendMessageEx(hDevice, 1, tgbd, slot, NULL, 0, 1000); 
if(Status != HE_OK) error(HeGetLastOsError(hDevice)); 
printf("Write protocol, status was %lx\n", Status); 
 
count  = 0; 
Status = HeHSBReceiveMessageEx(hDevice, &msg_type, tgbd, slot, reply, 
                               5, &count, 1000); 
if(Status != HE_OK) error(HeGetLastOsError(hDevice)); 
printf("Count           : %d.\n"      , count); 
printf("Message type    : %d.\n"      , msg_type); 
printf("Module type     : 0x%x\n"     , reply[0]); 
printf("Heron module    : HERON%d\n"  , reply[1]); 
printf("Processor type  : 0x%x\n"     , reply[2]); 
printf("Boot ROM version: 0x%x\n"     , reply[3]); 
printf("Option          : 0x%x\n"     , reply[4]); 
 
Status = HeClose(&hDevice); 
if(Status != HE_OK) error(HeGetLastOsError(hDevice)); 
} 



                                                                                                                           

52 HUNT ENGINEERING API REFERENCE MANUAL 

Level 2 Serial Bus functions 
This level of serial bus functions allows you more flexibility. With level 3 functions you 
must send a serial bus message as a whole, and they can be used only when following the 
HUNT HSB protocol. With level 2 functions, you can split up a message and send it in 
parts. And level 2 functions can be used for non HUNT HSB protocol messages. The 
HeHSBSendMessageEx function can be seen of consisting of 3 ‘level 2’ functions: 
HeHSBStartSendMessageEx(HE_HANDLE h, HE_WORD tgbd,HE_BYTE slot,int ms); 

HeHSBSendMessageDataEx (HE_HANDLE h, void *data, HE_DWORD Cnt, int ms); 

HeHSBEndOfSendMessageEx(HE_HANDLE h, int ms); 

HeHSBStartSendMessageEx prepares the serial bus to send a message to the hsb device 
identified by parameters ‘tgbd’ and ‘slot’. Parameter ‘slot’ is typically 1, 2, 3 or 4. If the serial 
bus is busy for longer than ‘ms’ milliseconds, the function may timeout. Use a value of 0 for 
‘ms’ if you don’t want a timeout. 

HeHSBSendMessageDataEx sends the actual message. Be aware, though, that this message 
is not equal to the message as used in HeHSBSendMessageEx. The HeHSBSendMessageEx 
function sends two extra bytes: the ‘message type’ and the ‘return address’, before it sends 
the actual message. With the HeHSBSendMessageDataEx function, when following the 
HUNT HSB protocol, you are expected to supply a data array where the first two bytes are 
the ‘message type’ and the ‘return address’. Bytes 3 and higher are the message you would 
have used in HeHSBSendMessageEx. The return address is always 5 plus the board number 
left shifted 3 ((board number<<3)+5), because the API is run on the host PC (and the host 
PC HSB device identifier is 5).  

The HeHSBSendMessageDataEx may also timeout, and in parameter ‘ms’ you can specify 
the number of milliseconds. In the previous case, HeHSBStartSendMessageEx, a timeout 
would typically be due to an arbitration timeout, ie the serial bus was busy. When sending a 
data array with HeHSBSendMessageDataEx, a timeout is usually due to the target module 
not being in the targeted slot. A timeout can also occur because the targeted module hasn’t 
been coded to accept HSB messages, or in the case of the HUNT HSB protocol, if the 
target isn’t programmed to accept or understand the message type you specified (for 
example, if you try to send a ‘program bitstream’ HSB message to a processor module).  

Finally, you end a message with HeHSBEndOfSendMessageEx. The ‘ms’ parameter 
specifies a timeout value in milliseconds, and relates to how long you are prepared to wait 
for the arbitration (to ‘release’ the serial bus) to complete. 

Similarly, HeHSBReceiveMessageEx can be seen of consisting of 3 ‘level 2’ functions: 
HeHSBStartReceiveMessageEx(HE_HANDLE h, HE_DWORD *id, int ms); 

HeHSBReceiveMessageDataEx (HE_HANDLE h, void *data, HE_DWORD size, 
         HE_DWORD *read, int ms); 

HeHSBEndOfReceiveMessageEx(HE_HANDLE h, int msec); 

HeHSBStartReceiveMessageEx prepares the serial bus to receive a message from the HSB. 
The sending device will be returned in parameter ‘id’. A timeout value can be specified in 
milliseconds in the ‘ms’ parameter. If a timeout occurs, it is because no message has been 
detected to arrive for ‘ms’ milliseconds. 

HeHSBReceiveMessageDataEx receives the actual message. Parameter ‘size’ denotes how 
many bytes you expect to receive; parameter ‘read’ will return the actual number of bytes 
that were received. Parameter ‘ms’ allows you to specify a timeout in milliseconds. 



                                                                                                                           

53 HUNT ENGINEERING API REFERENCE MANUAL 

With the HUNT HSB protocol, you would only try to receive a message after you have sent 
a protocol message to a target device. Depending on the message type, you would try to 
receive a message. A timeout could be due to the target module not being in the targeted 
slot. It may also occur if the target isn’t programmed to accept or understand the message 
type you specified in the sent message. 

With non HUNT HSB protocol messages, a timeout may also occur because the targeted 
module hasn’t been coded to send or reply to HSB messages. 

HeHSBEndOfReceiveMessageEx will complete the transfer. If there are any bytes left to 
read, they are read and then discarded. 

Let’s see how the earlier example would look like in ‘level 2’ functions. 

Example. Query a processor module using level ‘2’ functions 
void TestHSB(char *devname, int Board, int heronid) 
{ 
HE_BYTE reply[8]; 
int  slot, tgbd, toi2c, bdi2c; 
HE_DWORD switches[1], count, id; 
HE_BYTE prot[2]; 
 
switches[0] = HE_Switch_Last; 
hDevice = NULL; 
Status = HeOpenS(devname, (HE_WORD)Board, "hsb", &hDevice, switches); 
if(Status != HE_OK) error(HeGetLastOsError(hDevice)); 
printf("HSB opened %lx\n", Status); 
 
slot   = heronid&0xf; 
tgbd   = (heronid>>4)&0xf; 
Status = HeHSBStartSendMessageEx(hDevice, tgbd, slot, 1000); 
if(Status != HE_OK) error(HeGetLastOsError(hDevice)); 
prot[0] = 1;  // Message Type (see heapi.h) 
prot[1] = (0x5|(Board<<3)); // Board's HSB id: 0x5 + board switch<<3 
Status = HeHSBSendMessageDataEx (hDevice, prot, 2, 1000); 
if(Status != HE_OK) error(HeGetLastOsError(hDevice)); 
Status = HeHSBEndOfSendMessageEx(hDevice, 1000); 
if(Status != HE_OK) error(HeGetLastOsError(hDevice)); 
 
count = 0; 
toi2c = (slot|(tgbd<<3)); // HSB id that we expect message from 
bdi2c = ( 0x5|(Board<<3))<<1; // Board's HSB id: 0x5 + board switch<<3 
Status = HeHSBStartReceiveMessageEx(hDevice, &id, 1000); 
if (Status  != HE_OK) error(HeGetLastOsError(hDevice)); 
if (id      != bdi2c) printf("This message is not for us.\n"); 
Status = HeHSBReceiveMessageDataEx (hDevice, reply, 7, &count, 1000); 
if(Status   != HE_OK) error(HeGetLastOsError(hDevice)); 
if (count   != 7    ) printf("Expected at least seven bytes.\n"); 
if (reply[1]!= toi2c) printf("Sender %x, not %x??\n", reply[1], toi2c); 
Status = HeHSBEndOfReceiveMessageEx(hDevice, 1000); 
if(Status  != HE_OK) error(HeGetLastOsError(hDevice)); 
printf("Count           : %d.\n"      , count); 
printf("Message type    : %d.\n"      , reply[0]); 
printf("Module type     : 0x%x\n"     , reply[2]); 
printf("Heron module    : HERON%d\n"  , reply[3]); 
printf("Processor type  : 0x%x\n"     , reply[4]); 
printf("Boot ROM version: 0x%x\n"     , reply[5]); 
printf("Option          : 0x%x\n"     , reply[6]); 
 
Status = HeClose(&hDevice); 
if(Status != HE_OK) error(HeGetLastOsError(hDevice)); 
} 



                                                                                                                           

54 HUNT ENGINEERING API REFERENCE MANUAL 

For non-protocol messages, there’s a worked out example on the HUNT CD. It uses one 
HERON processor module, where the HERON API is used to receive and then return 
HSB messages in exchange with a host program. The example is located on the CD in 
cd:\software\examples\host_api_examples\c6x\hsb. The host code is in this directory; the 
HERON processor code is in the ‘dsp’ sub-directory. Via the CD front-end you can find 
the example via: Getting Started  Getting Started with C6000 modules and tools  Host 
API examples. This will open Windows Explorer and put you in the host_api_examples 
directory.  

Level 1 Serial Bus Functions (lowest level) 
Level 2 HSB functions are expressed in level 1 HSB functions. As it will be harder to use 
level 1 functions we would therefore recommend that you use level 2 functions. Level 1 
functions are explained here just for completeness. 

In all cases, you would first open the HSB device, and then initialise the serial bus, using 
“HeHSBInit()”. However, in some cases you may want to do a system reset first (using a 
different device, “fifoa”). For example, on processor modules, answering serial bus queries 
is done by a small boot program that gets downloaded from flash memory after a reset. If 
the processor has already been booted with a user program, and that user program doesn’t 
implement serial bus queries, then you won’t get any answer to your queries. Therefore, it’s 
sometimes best to first reset (“fifoa”) device, then to open the serial bus, and only then do 
the “HeHSBInit()”. 

Following the “Query a processor module” example in the previous sections, to obtain 
information from processor modules, you would want to write a few bytes to it tell the 
target processor to return some information. This is a protocollized process and you cannot 
just write any value you like – unless you implemented your own serial bus protocol. The 
standard HUNT HSB protocol is 2 bytes: a digit 1 followed by the serial bus id of the 
motherboard you’re using: 5. If the board switch were set at 1, the serial bus id would be 13. 
If the board switch were set at 2, the id would be 21, etc. (Id=(board switch<<3)+5). 

But before writing the protocol value, first you need to become master of the serial bus. 
This is done with the “HeHSBMaster()” function. This function has a timeout; if after some 
time the function still was unable to become serial bus master, it times out. The user can set 
the timeout value. 

Once you’re master, you can write the protocol to the serial bus, using “HeWrite()”. If you 
write to e.g. a FPGA device, simply write all the bytes to want to upload to the device. 

After writing to the serial bus, it’s time to release it and free the bus. This is done with the 
“HeHSBSlave()” function. As with “HeHSBMaster()”, there’s a timeout associated with it. 

In the case of processor modules, we would now want to read the processor module’s 
response. First, we need to wait for the arrival of the “start” of the message. This is done 
with the “HeHSBListen()” function. Basically, the processor module tries to become serial 
bus master and then writes to it. The “HeHSBListen()” waits until the message arrives, and 
gives you the serial bus ID the message is aimed at. 

Finally, after a successful call to “HeHSBListen()”, you can use “HeRead()” to read the 
response. “HeRead()” assumes that you know how long the message is. If this is inconve-
nient, you can read byte-by-byte, and use HeTestIo() to time out if there are no more 
message bytes arriving. 

An example of usage now follows. 



                                                                                                                           

55 HUNT ENGINEERING API REFERENCE MANUAL 

int serial_bus(char *devname, int Board, int slot) 
{ 
 HE_IOSTATUS ReadIoStatus  = NULL; 
 HE_IOSTATUS WriteIoStatus = NULL; 
 char *Comport = "hsb"; 
 HE_DWORD switches[2]; 
 int i; 
 HE_BYTE protocol[4]; 
 HE_BYTE reply[8]; 
 
 hsbDevice     = NULL; 
 ReadIoStatus   = NULL; 
 WriteIoStatus  = NULL; 
 
 switches[0]=HE_Switch_Last; 
 
 /* Open the serial bus device */ 
 Status=HeOpenS(devname,Board,Comport,&hsbDevice, switches); 
 if(Status!=HE_OK)return error(HeGetLastOsError(hsbDevice)); 
 
 /* Create an object for reading the serial bus */ 
 Status=HeInitIoStatus(hsbDevice, &ReadIoStatus); 
 if(Status!=HE_OK)return error(HeGetLastOsError(hsbDevice)); 
 
 /* Create an object for writing the serial bus */ 
 Status=HeInitIoStatus(hsbDevice, &WriteIoStatus); 
 if(Status!=HE_OK)return error(HeGetLastOsError(hsbDevice)); 
 
 Sleep(250); 
 
 /* Initialise the device */ 
 Status=HeHSBInit(hsbDevice, 0x5); 
 if(Status!=HE_OK)return error(HeGetLastOsError(hsbDevice)); 
 
 /* Try to become serial bus master */ 
 Status=HeHSBMaster(hsbDevice, slot, 1000); 
 if(Status!=HE_OK)return error(HeGetLastOsError(hsbDevice)); 
 

/* Initialise the protocol buffer for querying a HERON   */ 
/* processor module       */ 

 protocol[0] = 1; // protocol type 
 protocol[1] = 0x5; // return HSB address (HEPC8 0) 
 
 /* Now write the protocol buffer onto the serial bus */ 
 Status=HeWrite(hsbDevice, protocol, 2, WriteIoStatus); 
 if(Status==HE_IoInProgress) 
  Status = HeWaitForIo(hsbDevice, WriteIoStatus); 
 if(Status!=HE_OK)return error(HeGetLastOsError(hsbDevice)); 
 
 /* Done writing. Release the serial bus */ 
 Status=HeHSBSlave(hsbDevice, 1000); 
 if(Status!=HE_OK)return error(HeGetLastOsError(hsbDevice)); 
 
 /* Listen for an answer… */ 
 Status=HeHSBListen(hsbDevice, &i, 1000); 
 if(Status!=HE_OK)return error(HeGetLastOsError(hsbDevice)); 
 
 /* There was an answer. Now read it. */ 
 Status = HeRead(hsbDevice, reply, 7, ReadIoStatus); 
 if(Status==HE_IoInProgress) 
  Status = HeWaitForIo(hsbDevice, ReadIoStatus); 
 if(Status!=HE_OK)return error(HeGetLastOsError(hsbDevice)); 
 
 /* A HERON processor module returns 7 bytes as follows: 



                                                                                                                           

56 HUNT ENGINEERING API REFERENCE MANUAL 

    byte 0: response type (2) 
    byte 1: serial bus ID from sender of message 
    byte 2: module type (1=processor) 
    byte 3: heron module type (1=HERON1, 4=HERON4) 
    byte 4: processor type (1=C6201, 2=C6701) 
    byte 5: boot ROM version (3 at the time of writing) 
    byte 6: option (can be any, but usually 0) 
 */ 
 printf("Serial bus:slot %d: HERON%d-%s, rom version %d.\n", 
         reply[1],reply[3],GetProcessor(reply[4]),reply[5]); 
 
 /* Done. Close the device. */ 
 Status = HeClose(&hsbDevice); 
 if(Status!=HE_OK)return error(HeGetLastOsError(hsbDevice)); 
 
 return reply[3]; 
} 

HERON Serial Bus Message Types 
A full list of HERON serial bus message types can be found in the HSB specification 
document. (The file is named ‘hsbspec.pdf’ and usually located on the HUNT CD in the 
\web\pdfs\tech directory. You can also use the HUNT CD front-end, “User Manuals”  
“Technology Documents”  “HERON Serial Bus Specification”. Review Appendix 1.) 

 

 



                                                                                                                           

57 HUNT ENGINEERING API REFERENCE MANUAL 

JTAG 

PLEASE NOTE: The JTAG is not supported under VxWorks and RTOS-32. 

The API interface to a JTAG device on one of the HUNT ENGINEERING host boards 
is performed via two functions HeJtagRead() and HeJtagWrite(). These functions 
perform an address mapping relevant to that board type, and pass these accesses through to 
the target board. 

Where it can (i.e. anywhere except Windows NT) the DLL will directly pass reads and 
writes to the board’s JTAG interface having first mapped the address properly for that 
board type. 

The interface to the HeJtag functions uses the following mapping for the JTAG interface 
registers:  

TI Debugger Symbolic Name Address with which to call the 
HeJtagRead/HeJtagWrite fnc 

Group1 
SC_REG_CNTL0 0x0000 
SC_REG_CNTL1 0x0002 
SC_REG_CNTL2 0x0004 
SC_REG_CNTL3 0x0006 
SC_REG_CNTL4 0x0008 
SC_REG_CNTL5 0x000A 
SC_REG_CNTL6 0x000C 
SC_REG_CNTL7 0x000E 
SC_REG_CNTL8 0x0010 
SC_REG_CNTL9 0x0012 
SC_REG_MINOR_CMD 0x0014 
SC_REG_MAJOR_CMD 0x0016 
SC_REG_CNT1_LOW 0x0018 
SC_REG_CNT1_HIGH 0x001A 
SC_REG_CNT2_LOW 0x001C 
SC_REG_CNT2_HIGH 0x001E 

Group2 
SC_REG_STATUS0 0x0020 
SC_REG_STATUS1 0x0022 
SC_REG_STATUS2 0x0024 
SC_REG_STATUS3 0x0026 
SC_REG_CAPT_LOW 0x0028 
SC_REG_CAPT_HIGH 0x002A 
SC_REG_SERIAL_RD 0x002C 
SC_REG_SERIAL_WR 0x002E 
SC_REG_XL0 0x0030 
SC_REG_XL1 0x0032 
SC_REG_XL2 0x0034 
SC_REG_XL3 0x0036 
SC_REG_XL4 0x0038 
SC_REG_XL5 0x003A 
SC_REG_XL6 0x003C 
SC_REG_XL7 0x003E 



                                                                                                                           

58 HUNT ENGINEERING API REFERENCE MANUAL 

Group3 
SC_REG_CONTROL0 0x0040 

The HeJtag functions encode the 16 bit JTAG register offset and the 16 bit JTAG data 
into one variable. The HeJtagWrite routine takes an HE_DWORD in which the low 16 bits 
is the data to be written and the high 16 bits is the required register offset from the table 
above. 

The HeJtagRead routine takes a pointer to an HE_DWORD, which is initialised to have the 
register offset from the table above in the high 16 bits. The function returns the requested 
data in the low 16 bits of the HE_DWORD pointed to. 

 



                                                                                                                           

59 HUNT ENGINEERING API REFERENCE MANUAL 

Code Composer Studio Plugins 

What is a plugin? 

A plugin is a program that can be called from within Code Composer Studio. HUNT EN-
GINEERING provides several, and they are accessible from the ‘Tools’ menu in a Code 
Composer Studio’s processor window.  

 
The ‘Server Loader plug-in’ belongs to the HUNT ENGINEERING Server/Loader packa-
ge and is further discussed in Server/Loader documentation. 

Please note that the plugins only work with Code Composer Studio (as opposed to the plain 
Code Composer). This implies that only ‘C6x HERON systems are supported. 

A plugin is very tightly integrated with Code Composer Studio. Plugin source code can ‘call’ 
a number of selected Code Composer Studio ‘functions’, like for example ‘set a breakpoint’, 
‘run to breakpoint’, and ‘load a file’. Therefore, a plugin allows us to integrate our hardware 
and software with Code Composer Studio. 

For example, the ‘Reset System’ plugin will reset HERON systems. This is a HUNT ENGI-
NEERING specific action, not natively supported by Code Composer Studio. But with a 
plugin this HUNT ENGINEERING specific functionality is seamlessly added to Code 
Composer Studio. 

The ‘Reset System’ Plugin 

What does it do? 
The ‘Reset System’ plugin will reset the HERON system hardware. Optionally, it can then 
reload your source file(s) and run to ‘main’. (See the options section later in this section.) 

How do I start it? 
Go to the Code Composer Tools menu and select Tools  HUNT ENGINEERING  
Reset System. A new window will be created within the Code Composer Studio window, at 
the bottom of this window. The plugin will work with multiple processors. 



                                                                                                                           

60 HUNT ENGINEERING API REFERENCE MANUAL 

 

How do I use it? 
Right-click on any part of the grey area of the plug-in, select “Property Page” from the 
menu that has now appeared. Select what you want the plug-in to do after the actual system 
reset (see the options section below for details). Then click “OK”. Next, to reset the 
system, click ‘Reset System’. 

Options 
There are a number of options for the plugin. You can reach the options window by right-
clicking on the plugin’s grey area. A menu will appear. Click ‘Property Page’. 

 



                                                                                                                           

61 HUNT ENGINEERING API REFERENCE MANUAL 

Let all processors run free after the reset 
The plugin will do a ‘RunFree’ on all processors, then do a HERON system reset.  

Halt all processors after the reset (default) 
The plugin will do a ‘RunFree’ on all processors, do a system reset, then halt all processors. 

Halt all processors, then run them all 
The plugin will do a ‘RunFree’ on all processors, do a system reset, then halt all processors. 
Then it will put all processors in ‘Run’ mode.  

Halt all processors, then reload them all 
The plugin will do a ‘RunFree’ on all processors, do a system reset, then halt all processors. 
If a processor was previously loaded, it will attempt to do a ‘Reload’ so that the original file 
is again loaded. Execution will be at the entry-point of the file (ie ‘c_int00’). 

Halt all processors, reload them, then run 
The plugin will do a ‘RunFree’ on all processors, do a system reset, then halt all processors. 
If a processor was previously loaded, it will attempt to do a ‘Reload’, then a ‘Run’. 

Program HEART. Use the network file below. 
After the reset, the plug-in can run ‘HeartConf’ to (re-)create HEART connections between 
the modules. Please be aware that a system reset will also clear all HEART connections. For 
non-HEART boards such as the HEPC8 this option isn’t used. 

Use the ‘Browse’ button to select a network file. Use the ‘Edit’ button to alter an existing or 
to create a new (template) network file. 

Use ‘Zap HEART before programming’ by default. Only if you use jumpers to ‘hard-wire’ 
HERON FIFO’s to certain timeslots, leave this tick box un-ticked. A jumpered connection 
will exist even after a reset. Simply adding HEART connections (from a network file) may 
cause unexpected connections. The ‘Zap HEART before programming’ will first erase all 
pre-existing HEART connections. If there’s HERON module that uses a jumper, then this 
setting will not make any difference. 

To create the HEART connections, the reset plug-in will execute ‘HeartConf’ in a DOS-
box. If there’s no error, the DOS-box closes again. Upon error, the DOS-box will remain 
open until you press a key or click the box away. In error situations it may be helpful to use 
the ‘Verbose’ option, as this will ask ‘HeartConf’ to output some progress information. 

Trace (for support purposes only) 
Ticking this box will create a file ‘sl’ in the root directory (‘\’) of the current drive. This is 
only there for support purposes, ie when for some reason the reset plug-in doesn’t work 
properly and HUNT technical support needs a trace file to find out what the plug-in is 
doing.  

The ‘Create new HERON-API Project’ plugin 

What does it do? 
The ‘Create new HERON-API Project’ plugin will create a new Code Composer Studio 
project that is ready-for-use with HUNT ENGINEERING ‘C6x HERON based systems. 



                                                                                                                           

62 HUNT ENGINEERING API REFERENCE MANUAL 

How do I start it? 
Go to the Code Composer Tools menu and select Tools  HUNT ENGINEERING  
Create new HERON-API Project. A new window will be created within the Code 
Composer Studio window, at the bottom of this window.  

 

How do I use it? 
First, you need to select a directory where you wish to create and keep your new project. If 
you want to create a new project using a HUNT ENGINEERING example, please first use 
e.g. Windows Explorer to copy the example from the HUNT ENGINEERING CD into 
any directory on your harddisk. For example, copy “cd:\software\examples\starting_ 
development\*.*” to “c:\ti\myprojects\demo”. 

Type the full path + project name in the ‘Project Name’ edit box; or use the ‘Browse’ but-
ton to browse to your directory. Using the ‘Browse’ button, once you arrived in the direc-
tory of your choice, type the name you want to give to your project in the ‘File name’ edit 
box. You can also ‘overwrite’ an existing project by selecting an existing ‘.mak’ file. You can 
also select a ‘.c’ or ‘.cpp’ file. The project name will be derived from the selected file name. 

 



                                                                                                                           

63 HUNT ENGINEERING API REFERENCE MANUAL 

If you choose a name for the project that is the same as the name of a source file (apart 
from the extension), then this source file will automatically be added to the project. If there 
is no source file with an identical name, a new source will be created with the same name as 
the name of the project. In the case of the example above, the “Project Name” edit box 
would read “c:\ti\ myprojects\demo\demo.mak”. 

 
When a proper path plus project name has been typed in the ‘Project Name’ edit box, press 
the ‘Create New Project’ button. This will now create a new project. Two questions will be 
asked (when creating a brand-new project). First, it will ask you to select a HERON module 
type. Select the module type you want to create the project for; typically it would be the 
HERON module that the current Code Composer Studio processor window is running on.  

 
The second question will be if you want to create the project for the Server/Loader. The 
Server/Loader is HUNT ENGINEERING software that allows you to easily load and 
serve a network of DSP processors. The Server/Loader uses a small network file (ASCII 
format) that describes the DSP processor network. The Server/Loader works by having a 
call to a ‘bootloader’ function in the C file’s ‘main’ routine. To debug ‘Server/Loader’ 
applications, you need to use the ‘Server/Loader’ plugin to start up a debugging session.  

 



                                                                                                                           

64 HUNT ENGINEERING API REFERENCE MANUAL 

Click ‘No’ if you create a project that only needs to use Code Composer Studio. It is quite 
easy to upgrade a Code Composer Studio project to a Server/Loader application later on. 

Options 
There are a number of options for the plugin. You can reach the options window by right-
clicking on the plugin’s grey area. A menu will appear. Click ‘Property Page’. 

 
Create C Template file, then add it to the project 
By default, the ‘Create new HERON-API project’ plugin will add a C file that has the same 
name as the project to the project. If there is no such C file, a template C file will be genera-
ted and added to the project. If you don’t want a template C file to be generated in such 
cases, please unclick this box. 

Create trace file of events 
For support purposes, it is possible to create a file that logs what actions are undertaken. 
The file created is named ‘’. 

Add processor type 
The ‘Create new HERON-API project’ plugin adds some compiler options to the project. 
It will add a ‘-mv6201’, ‘-mv6701’ etc. option depending on the HERON type you selected. 
Unclick this box if you want to have no such processor type compiler option added 

Add speculation (-mh64) 
The ‘Create new HERON-API project’ plugin adds some compiler options to the project. 
This option is used to get the compiler to create higher performance code. For more info 
on what the option does, please refer to TI’s compiler manual. Tick the box if you want the 
plugin to generate a new project with this option. 



                                                                                                                           

65 HUNT ENGINEERING API REFERENCE MANUAL 

Add AutoInline (-oi256) 
The ‘Create new HERON-API project’ plugin adds some compiler options to the project. 
This option is used to get the compiler to create higher performance code. For more info 
on what the option does, please refer to TI’s compiler manual. Tick the box if you want the 
plugin to generate a new project with this option. 

Add No Bad Aliases (-mt) 
The ‘Create new HERON-API project’ plugin adds some compiler options to the project. 
This option is used to get the compiler to create higher performance code. For more info 
on what the option does, please refer to TI’s compiler manual. Tick the box if you want the 
plugin to generate a new project with this option. 

Add Map File 
Be default the plugin will create a new project, configured to create a map file upon ‘Build’. 
A map file is created by the linker, detailing what software sections are placed where, on 
what physical memory sections. A map file is helpful debugging stack, heap, section over-
flow and other kinds of problems. If you don’t want the plugin to create projects that confi-
gure the new project to have map files, unclick this box. 

What actions does the plugin perform? 
Create a new project. 
First, the plug-in will create a new, empty, project, and immediately close it again. 
Add compiler and linker options to the mak file 
It will then edit the make file (*.mak) and change some of the compiler and linker 
options. The plug-in will add the “-mi100”, “-o3”, and possibly other options (see the 
options section above), and will add include paths to the HERON-API and (optionally) 
the HUNT ENGINEERING Server/Loader include directories. After a successful edit of 
the make file, the project is then re-opened. 
Add CDB file 
Next, the plug-in will add a CDB file to the project. The CDB file will be chosen from 
the HERON-API’s cmd directory, based on the choices you made. These CDB files have 
been created to reflect the hardware configurations of the different HERON modules. 
Add linker command file 
Then a linker command file will be added to the project. The linker command file will be 
chosen from the HERON-API’s cmd directory, based on the choices you made. This 
linker command file includes (using the “-l” option) the “standard” linker command file 
created by the Code Composer Studio / DSP/BIOS configuration compiler (gconf). This 
is necessary in order to make the linker understand the non-default code and data 
sections created by the HERON-API. 
Add libraries 
The plug-in will then add the appropriate HERON-API and (optionally) Server/Loader 
library to the project.  



                                                                                                                           

66 HUNT ENGINEERING API REFERENCE MANUAL 

Add C file or C template 
Finally, a source file is added to the project. If there is a source file in the project 
directory with the same name (apart from the extension) as the project name, that source 
file will be added to the project. If there is no such source file, the plug-in will create a 
new source file (template) and add it to the project. For example, if the project name is 
“demo.mak”, the plug-in will add to the project a C file named “demo.c”. 

If you don’t want to have a template C file added to your projects, the Property Page has 
an option that allows you to disable this facility. The Property Page is reached by right-
clicking on the grey area of the plug-in, and then selecting Property Page in the pop-up 
menu that should have appeared. 

For most HUNT ENGINEERING example programs, you can now build the project. 
These example programs have only a ‘maintask’, and the CDB files are configured to 
include a ‘maintask’. A few examples have more entities than just a ‘maintask’. For 
example, the ‘Starting Development’ example uses two ‘SWI’ objects, and you would 
need to edit the CDB file and add two ‘SWI’ objects. Such details will be explained in 
the document that go with the example programs. 
 



                                                                                                                           

67 HUNT ENGINEERING API REFERENCE MANUAL 

Example Programs 

Examples are provided on the HUNT ENGINEERING CD. For LINUX, the examples 
are embedded in the tar file (the tar file is on the CD). In this case, the examples are in a 
sub-directory ‘etc’ under the main API installation directory. 

To use the examples, copy the example directory tree across from the CD onto your 
harddisk. Use Windows Explorer to do so, or use a DOS box. In this case, to copy the 
whole example directory tree over into the API installation, type: 
xcopy d:\software\examples\host_api_examples c:\heapi /s 

 (Assuming ‘d:’ is your CD drive, and your installation directory is ‘c:\heapi’.) 

The examples each have instructions on how to build and run them, per supported opera-
ting system. The instructions are in PDF documents located in the example directories. The 
HERON example programs will be in sub-directory ‘c6x’. Legacy example programs will be 
in sub-directory ‘c4x’. 



                                                                                                                           

68 HUNT ENGINEERING API REFERENCE MANUAL 

Technical Support 

Technical support for HUNT ENGINEERING products should first be obtained from the 
comprehensive Support section http://www.hunteng.co.uk/support/index.htm on the 
HUNT ENGINEERING web site. This includes FAQs, latest product, software and 
documentation updates etc. Or contact your local supplier - if you are unsure of details 
please refer to http://www.hunteng.co.uk for the list of current re-sellers.  

HUNT ENGINEERING technical support can be contacted by emailing 
support@hunteng.co.uk, calling the direct support telephone number +44 (0)1278 760775, 
or by calling the general number +44 (0)1278 760188 and choosing the technical support 
option. 

http://www.hunteng.co.uk/support/index.htm
http://www.hunteng.co.uk/
mailto:support@hunteng.co.uk

	Revision History
	Why do I need the API?
	Development Systems and Target Systems

	What is the API?
	Platform Independence
	Consistent interface

	How is it done?
	API libraries
	Device Drivers

	What is supported?
	Platforms
	Development & Target systems


	Installation
	API Interface: Concepts
	Writing Programs that use the API
	Devices
	Open and Close a Device
	Asynchronous access
	Buffer Allocation (and the “huge” memory model)
	A simple program that uses the API interface
	Maintaining Platform Independence
	Locking of Devices for Exclusive access

	API Interface: Data Structures
	Using the Handles

	API Interface: Functions
	Status Codes.

	Heron Serial Bus (HSB)
	Introduction

	JTAG
	Code Composer Studio Plugins
	What is a plugin?
	The ‘Reset System’ Plugin
	What does it do?
	How do I start it?
	How do I use it?
	Options
	Let all processors run free after the reset
	Halt all processors after the reset (default)
	Halt all processors, then run them all
	Halt all processors, then reload them all
	Halt all processors, reload them, then run
	Program HEART. Use the network file below.
	Trace (for support purposes only)


	The ‘Create new HERON-API Project’ plugin
	What does it do?
	How do I start it?
	How do I use it?
	Options
	Create C Template file, then add it to the project
	Create trace file of events
	Add processor type
	Add speculation (-mh64)
	Add AutoInline (-oi256)
	Add No Bad Aliases (-mt)
	Add Map File

	What actions does the plugin perform?
	Create a new project.
	Add compiler and linker options to the mak file
	Add CDB file
	Add linker command file
	Add libraries
	Add C file or C template



	Example Programs
	Technical Support

