

HUNT ENGINEERING
Chestnut Court, Burton Row,

Brent Knoll, Somerset, TA9 4BP, UK
Tel: (+44) (0)1278 760188,
Fax: (+44) (0)1278 760199,

Email: sales@hunteng.co.uk
http://www.hunteng.co.uk
http://www.hunt-dsp.com

HERON-API

Hardware Access Library
 for HUNT ENGINEERING

C6000 HERON processing modules

USER MANUAL
Version 3.9

Document Rev M
P.Warnes & R.Williams 30/7/04

2 HUNT ENGINEERING HERON-API USER MANUAL

COPYRIGHT
This documentation and the product it is supplied with are Copyright HUNT
ENGINEERING 1999. All rights reserved. HUNT ENGINEERING maintains a policy
of continual product development and hence reserves the right to change product
specification without prior warning.

WARRANTIES LIABILITY and INDEMNITIES
HUNT ENGINEERING warrants the hardware to be free from defects in the material
and workmanship for 12 months from the date of purchase. Product returned under the
terms of the warranty must be returned carriage paid to the main offices of HUNT
ENGINEERING situated at BRENT KNOLL Somerset UK, the product will be repaired
or replaced at the discretion of HUNT ENGINEERING.

Exclusions - If HUNT ENGINEERING decides that there is any evidence of
electrical or mechanical abuse to the hardware, then the customer shall have no
recourse to HUNT ENGINEERING or its agents. In such circumstances HUNT
ENGINEERING may at its discretion offer to repair the hardware and charge for
that repair.

Limitations of Liability - HUNT ENGINEERING makes no warranty as to the fitness of
the product for any particular purpose. In no event shall HUNT
ENGINEERING’S liability related to the product exceed the purchase fee actually
paid by you for the product. Neither HUNT ENGINEERING nor its suppliers
shall in any event be liable for any indirect, consequential or financial damages
caused by the delivery, use or performance of this product.

Because some states do not allow the exclusion or limitation of incidental or consequential
damages or limitation on how long an implied warranty lasts, the above limitations may not
apply to you.

TECHNICAL SUPPORT
Technical support for HUNT ENGINEERING products should first be obtained from the
comprehensive Support section www.hunteng.co.uk/support/index.htm on the HUNT
ENGINEERING web site. This includes FAQs, latest product, software and
documentation updates etc. Or contact your local supplier - if you are unsure of details
please refer to www.hunteng.co.uk for the list of current re-sellers.

HUNT ENGINEERING technical support can be contacted by emailing
support@hunteng.demon.co.uk, calling the direct support telephone number +44 (0)1278
760775, or by calling the general number +44 (0)1278 760188 and choosing the technical
support option.

http://www.hunteng.co.uk/support/support.htm
www.hunteng.co.uk

3 HUNT ENGINEERING HERON-API USER MANUAL

Version Control
Version 1.0 – First version

Software v2.0 Major rewrite to remove design problems. Document rev. C refers.

Software v2.1 FIFO performance enhanced, two new functions. Document rev. D refers.

Software v2.2 Support added for dedicated DMA. Document rev. E refers.

Software v2.3 Some function names changed to match xDAIS guidelines (see section
Migrating from Previous Versions of the HERON-API). Changed FIFO Handle type to be
“HeronFIFO” to match xDAIS guidelines. New functions added:
HeronReadWord,HeronWriteWord, HeronCancelWithFlush, HeronInstallIsr,
HeronUmiOut, HeronUmiIn and HeronModId. Some functions made inline to increase
efficiency.

Software v2.4 FIFO performance enhanced. Functions HeronTestIo and HeronWaitIo
rewritten as inline functions. HeronRead and HeronWrite made partially inline. Functions
HeronRestartRead and HeronRestartWrite added.

Software v2.5 Supported added for the HERON4 module. HERON1 code also improved.
New function HeronSwiOpenFifo added.

Software v2.6 Correction made to the HERON4 FIFO addresses.

Software v2.7 UMI functions added for the HERON4. Some changes made to the way
functions are inlined. Corrected HeronWriteWord for the HERON1.

Software v3.0 Streaming I/O (SIO) added for both the HERON1 and HERON4. New
functions added: HeronSioOpenFifo, HeronSioClose, HeronSioRead, HeronSioWrite and
HeronSioReadAlign.

Software v3.1 HeronSerial Bus (HSB) functions added for the HERON1 and HERON4.
New functions added: HeronHsbOpen, HeronHsbClose, HeronHsbSendMessage,
HeronHsbReceiveMessage, HeronHsbStartSendMessage, HeronHsbSendMessageData,
HeronHsbEndOfSendMessage, HeronHsbStartReceiveMessage,
HeronHsbReceiveMessageData, and HeronHsbEndOfReceiveMessage.

Software v3.2 Dedicated DMA functions for HERON4 and HERON1 had bugs. These
have been fixed at this version.

Software v3.3 first version of HERON API to support HEART (HEPC9 like) carriers.
HEPC8 is now supported as a legacy carrier.

Documentation change to clarify use of DMA reload register

Software v3.9 added HeronHsbSendMessageEx function to account for latency between
EM2 connected HSBs on different boards.

4 HUNT ENGINEERING HERON-API USER MANUAL

TABLE OF CONTENTS
INTRODUCTION.. 6

FIFO ACCESSES.. 6
USER DMA MANAGEMENT... 6
HERON SERIAL BUS FUNCTIONS.. 6
HARDWARE SPECIFIC FUNCTIONS ... 6

SOFTWARE STRUCTURE OF HERON-API... 7
MIGRATING FROM PREVIOUS VERSIONS OF THE HERON-API .. 7
FIFO ACCESSING .. 8

FIFO Access Models.. 9
An Example of FIFO Access with the WaitIo Model ... 12
An Example of FIFO Access with the TestIo Model .. 13
An Example of FIFO Access with the SWI Model ... 13
An Example of FIFO Access with the SEM Model .. 13
An Example of FIFO Access with the Streaming I/O Model ... 14

USER DMA MANAGEMENT... 16
HARDWARE ACCESS FUNCTIONS... 16
HERON SERIAL BUS FUNCTIONS ... 17

HSB Messages ... 17
The Message Type ... 18
HSB and EM2 Inter-Board Connectors... 18

SELECTING THE RIGHT LIBRARY FOR YOUR APPLICATION... 19
LINKING ISSUES... 22
BUILDING YOUR APPLICATION... 23

Building an Application for Use with the Server/Loader .. 24
HOW IT WORKS WITH DSP/BIOS ... 25
USING THE HERON-API INLINE FUNCTIONS .. 26

HERON-API FUNCTIONS .. 27
FIFO ACCESS FUNCTIONS... 27

HeronFIFO *HeronOpenFifo(int fifono, char *s)... 27
HeronFIFO *HeronSwiOpenFifo(int fifono, char *s, SWI_Obj *swi) .. 29
HeronFIFO *HeronSemOpenFifo(int fifono, char *s, SEM_Obj *sem) ... 32
HeronFIFO *HeronSioOpenFifo(int fifono, char *s, SIO_Obj *sio, Ptr *pbuffer) 35
inline int HeronRead(HeronFIFO *handle, void *buffer, unsigned int size) 38
int HeronRestartRead(HeronFIFO *handle, void *buffer) ... 38
inline unsigned int HeronReadWord(HeronFIFO *handle, int *status) ... 39
inline int HeronSioRead(HeronFIFO *handle, Ptr *pbuffer) ... 40
int HeronSioReadAlign(HeronFIFO *handle, int n, Ptr *pbuffer) ... 41
inline int HeronWrite(HeronFIFO *handle, void *buffer, unsigned int size) 43
int HeronRestartWrite(HeronFIFO *handle, void *buffer)... 43
inline int HeronWriteWord(HeronFIFO *handle, unsigned int data)... 44
inline int HeronSioWrite(HeronFIFO *handle, Ptr *pbuffer)... 45
int HeronTestIo(HeronFIFO *handle) .. 46
int HeronWaitIo(HeronFIFO *handle) ... 46
int HeronClose(HeronFIFO *handle) ... 47
int HeronSioClose(HeronFIFO *handle) .. 47
int HeronCancelIo(HeronFIFO *handle) ... 47
int HeronCancelWithFlush(HeronFIFO *handle, unsigned int *done) .. 48

USER DMA MANAGEMENT FUNCTIONS.. 49
int HeronDmaClaim()... 49
int HeronDmaFree(int dma)... 49
int HeronInstallIsr(unsigned int isr, int int_num)... 50

HERON SERIAL BUS FUNCTIONS ... 52

5 HUNT ENGINEERING HERON-API USER MANUAL

HeronHSB *HeronHsbOpen().. 52
int HeronHsbClose(HeronHSB *handle) ... 52
int HeronHsbSendMessage(HeronHSB *handle, int msg_type, int board, int slot, unsigned char
*buffer, unsigned int size).. 52
int HeronHsbSendMessageEx(HeronHSB *handle, int msg_type, int board, int slot, unsigned char
*buffer, unsigned int size, int retries) .. 53
int HeronHsbReceiveMessage(HeronHSB *handle, int *msg_type, int board, int slot, unsigned char
*buffer, unsigned int size, unsigned int *count) .. 53
int HeronHsbStartSendMessage(HeronHSB *handle, int board, int slot) 54
int HeronHsbSendMessageData(HeronHSB *handle, unsigned char *buffer, unsigned int size) . 55
int HeronHsbEndOfSendMessage(HeronHSB *handle) .. 56
int HeronHsbStartReceiveMessage(HeronHSB *handle, unsigned char *id)................................ 56
int HeronHsbReceiveMessageData(HeronHSB *handle, unsigned char *buffer, unsigned int size,
unsigned int *count) .. 57
int HeronHsbEndOfReceiveMessage(HeronHSB *handle).. 58

GENERAL HARDWARE ACCESS FUNCTIONS... 59
void HeronConfigOff()... 59
void HeronConfigOn()... 59
inline Int HeronDigioIn() .. 59
inline Void HeronDigioOut(int byte)... 59
int HeronModId() .. 59

UNCOMMITTED MODULE INTERCONNECT (UMI) FUNCTIONS... 60
int HeronUmiIn(int line).. 60
int HeronUmiOut(int line) ... 60
int HeronUmi0_In(int select, unsigned int *umi_value).. 60
int HeronUmi1_In(int select, unsigned int *umi_value).. 61
int HeronUmi2_In(int select, unsigned int *umi_value).. 61
int HeronUmi3_In(int select, unsigned int *umi_value).. 62
int HeronUmi0_Out(int select) .. 63
int HeronUmi1_Out(int select) .. 63
int HeronUmi2_Out(int select) .. 64
int HeronUmi3_Out(int select) .. 64
int HeronEnableUmiInt(int umi, int polarity).. 65
int HeronDisableUmiInt(int umi) .. 65
int HeronInstallUmiSwi(int umi, SWI_Obj *swi)... 66
int HeronInstallUmiSemaphore(int umi, SEM_Obj *sem) .. 66

THE HERON-API LIBRARY.. 67
WHERE IS THE LIBRARY? .. 67
WHERE IS THE SOURCE CODE?.. 67
CAN I COMPILE THE LIBRARY? ... 67

EXAMPLE PROGRAMS.. 68

TECHNICAL SUPPORT.. 69

APPENDIX 1: IMPLEMENTATION FOR HERON1... 70
Processor Interrupts .. 70
Dedicated DMA ... 71

APPENDIX 2: IMPLEMENTATION FOR HERON4... 72
Processor Interrupts .. 72
Dedicated DMA ... 73

6 HUNT ENGINEERING HERON-API USER MANUAL

Introduction

FIFO Accesses

The idea of HERON-API is to have a standard set of functions to access the
communications FIFOs of a HERON processor module. These FIFOs are provided by the
HERON module carrier boards, which will determine how they are used to interconnect
the HERON modules. The way that the HERON processor module accesses the FIFOs
through its module connectors is actually defined by the HERON module design.

What the HERON-API provides is a standard set of functions to access the FIFOs,
regardless of the actual HERON module type. In this way a user program can be written to
work with all HERON module types, present and future. As new HERON modules are
introduced that access the FIFOs in a different manner, or that use newer ’C6000 family
members, the user program can be easily re-used by recompiling with the new HERON-
API version that supports those modules.

User DMA Management

Because the HERON-API will use DMA where possible to perform FIFO accesses, it is
important that if the user wishes to use DMAs themselves, that they claim a DMA channel
from the HERON-API.

This prevents the HERON-API from disturbing the user’s DMA and vice-versa.

HERON Serial Bus Functions

The HERON-API includes functions that enable messages to be sent and received using
the HERON Serial Bus (HSB). The HERON Serial Bus is a relatively slow bus in
comparison to the fast FIFO interface. The serial bus is typically used to retrieve module
information or to configure devices in the system.

Hardware Specific Functions

There are also some other functions that allow the user access to certain other HERON
module functions, so that they also can be accessed through a function that removes the
specific hardware details that may change from module design to module design. An
example of this is access to the Digital I/O.

7 HUNT ENGINEERING HERON-API USER MANUAL

Software Structure of HERON-API

The HERON-API is a ’C6000 library, and as such is provided as several .lib files. There
are four libraries that are provided. Each library supports a different combination of data
access model and code access model. In order to select the appropriate library for use with
your application, please refer to the section ‘Selecting the Right Library for your
Application’.

In your source code you include the HERON-API functions by having a header file
included. The name of this header file defines the type of HERON module that you are
using. For example,
#include heron4.h

will include the HERON-API functions for the HERON4 module.

If you later wish to run your application on another HERON module type, this is the only
part of your source file that you will need to change.

The HERON-API has two code section names associated with it. These are
heronapi_code and heronapi_data. These section names are provided to allow some
control over where these sections are placed. They should be included in the linker
command file (.cmd) that you use to control the ’C6000 linker.

The section heronapi_code contains the instructions of the HERON-API functions.
The section heronapi_data contains the variable data structures used by the HERON-
API functions.

The placement of these sections is discussed in the section ‘Building your Application’.

Migrating from Previous Versions of the HERON-API

Version 3.3 supports HEART devices like the HEPC9, but has to maintain support for the
legacy HEPC8. The same HERON-API cannot be used for both board types due to the
differing FIFO flag positions. Version 3.3 provides separate (but almost identical) source
trees for the two board types as it is anticipated that future versions of HERON-API will be
further optimised in its use of the HEART FIFOs, and will add some new functions to
support new hardware features.

The differing carrier types are supported in the same way as the differing module type, i.e.
through the #include statement. Now three #includes are supported:-

#include heron4.h this is HEART based carrier support for the HERON4

#include heron4_pc8.h this is HEPC8 support for the HERON4

#include heron1_pc8.h this is HEPC8 support for the HERON1

At Version 2.3, there were several unfortunate but necessary changes made to the
HERON-API definitions. These changes were made in order to comply with xDAIS
guidelines. These are detailed as follows:-

1. The FIFO handle type definition ‘FIFO’ is replaced by the new type name ‘HeronFIFO’.

2. The config_off() and config_on() functions are replaced by the
HeronConfigOff() and HeronConfigOn() functions which are just name changes to

8 HUNT ENGINEERING HERON-API USER MANUAL

the functions.

3. The digio_out() and digio_in() functions are replaced by the
HeronDigioOut() and HeronDigioIn() functions which are just name changes to the
functions.

4. The dma_claim() and dma_free() functions are replaced by the
HeronDmaClaim() and HeronDmaFree() functions which are just name changes to the
functions.

As a result of these changes, the HERON-API now supports a standard naming scheme for
all function names, global variables, types and definitions.

All HERON-API function names and type definitions start with the text ‘Heron’, and all
global variables defined by the HERON-API library begin with the text ‘HRN’. Any
definitions supplied in the user application should therefore avoid text that starts with
‘Heron’ or ‘HRN’. Doing so will enable the user to avoid conflicts between objects and
function names when the application is built.

FIFO Accessing

The HERON-API provides many functions for accessing the communications FIFO of a
HERON system. These functions support different programming models and enable the
use of key features of DSP/BIOS in transferring data between a user application and a
FIFO.

Each FIFO is treated as a resource, that must first be “opened”. Once a FIFO has been
successfully opened, the user is given a FIFO handle with which to operate on that FIFO.
Any subsequent attempts to open that FIFO will fail, ensuring that a program cannot
mistakenly use the same FIFO twice and cause program errors.

A FIFO can be opened to read, or opened to write. Although an application may read and
write the same FIFO, this must be done using two separate handles. One handle must be
obtained by opening the FIFO with a read flag, and a separate handle must be obtained by
opening the FIFO with a write flag.

After successfully opening a FIFO, a program can transfer FIFO data using one of several
methods. Which method is used will depend on the requirements of each individual
application, but all must involve initiating a transfer to or from a FIFO, and later detecting
that the transfer has completed.

The following section discusses each transfer method and explains when each method
would typically be used.

When all data transfer to or from a FIFO has been completed, that FIFO should then be
“closed”. The operation of closing the FIFO returns it to a state where another process may
re-open that FIFO and perform a new task.

9 HUNT ENGINEERING HERON-API USER MANUAL

FIFO Access Models

The HERON-API is intended for use as part of a DSP/BIOS application, and as such
provides functions that use many of the key features of DSP/BIOS.

DSP/BIOS enables an application to be constructed as collection of threads, each of which
carries out a modularised function. DSP/BIOS enables a multithreaded program to run on
a single processor by allowing higher priority threads to preempt lower priority threads, and
by allowing various types of communication between threads.

DSP/BIOS provides several types of threads, which include hardware interrupts (HWIs),
software interrupts (SWIs), and tasks (TSKs).

The HERON-API provides FIFO access functions that can be called within the context of
a software interrupt or task. It also uses hardware interrupts internally to maintain the
operation of each FIFO transfer.

Depending on the application you are developing you may wish to perform a FIFO transfer
as part of a SWI or as part of a task. For each, there is a different programming model that
should be used. These models are explained below.

For each model, a more detailed description and example of the functions used can be
found in the section ‘HERON-API Functions’. Examples of the programming models can
also be found on the HUNT ENGINEERING CD, under the ‘heron_api_examples’
directory of the ‘examples’ directory tree.

The WaitIo Model

The FIFO transfer functions HeronRead and HeronWrite are asynchronous. This means
that calling the read or write function only initiates the transfer. The read or write itself
proceeds in the background.

When using HeronRead or HeronWrite, another function call is required to detect the
completion of the transfer. For the WaitIo model, this is done by calling the function
HeronWaitIo.

HeronWaitIo should be called after a transfer has been started using HeronRead or
HeronWrite and the program needs to do no other work than wait for the completion of
that I/O. When HeronWaitIo is called, it will simply not return until the I/O has
completed.

HeronWaitIo must only be used within the context of a task. As HeronWaitIo
implements a blocking mechanism that waits for the completion of the I/O, it cannot be
used within the context of a SWI. This is because a SWI should always run to completion
without blocking (the use of SWIs is further described below in the section ‘The SWI
Model’).

When using HeronWaitIo, the FIFO must first be opened with HeronOpenFifo. Once
processing is complete for that FIFO, the FIFO may be closed with HeronClose.

The TestIo Model

The TestIo model is similar to the WaitIo model, in that it is used as part of an
asynchronous transfer. For the TestIo model, the completion of a previously started
transfer is detected by a call to HeronTestIo, but unlike HeronWaitIo this function

10 HUNT ENGINEERING HERON-API USER MANUAL

does not block.

When called, HeronTestIo will immediately return a status about the I/O specified by
the handle. The status will be “in-progress” or “complete”.

In comparison to HeronWaitIo, this function allows useful processing to be done by the
processor while I/O completion is still awaited.

Following the start of a transfer, a certain amount of processing can be performed before
returning to check the state of the transfer. Each time the call returns with the status “in-
progress”, further processing can again be performed. This loop can be repeated several
times until the transfer finally completes and the status is returned “complete”.

HeronTestIo can be used within the context of both a task or a SWI, as it does not block.

When using HeronTestIo, the FIFO must first be opened with HeronOpenFifo. Once
processing is complete for that FIFO, the FIFO may be closed with HeronClose.

The SWI Model

A SWI, or software interrupt is modelled after the operation of hardware interrupts. A SWI
however, is triggered by calling SWI functions from within the program. When a SWI
function runs, it must run to completion. This is because the priority of SWIs is higher than
that of tasks. If a SWI were to block, it would also block the operation of all tasks (as well
as any other SWIs of the same or lower priority).

The HERON-API supports the use of SWIs in two ways. Firstly, the functions
HeronRead and HeronWrite may be called within the context of a SWI. These functions
are asynchronous, in that each will initiate either a read or write and will then return. As
such, these functions can never block waiting for the completion of a transfer.

Secondly, the HERON-API can be used to post a SWI on the completion of a transfer.

By opening a FIFO handle using the function HeronSwiOpenFifo, a software interrupt
can be attached to the completion of a transfer for that FIFO. When opening a FIFO in
this way, HeronTestIo and HeronWaitIo are no longer required. Instead, a user
function specified through a DSP/BIOS SWI object is attached to the FIFO handle. Each
time a transfer completes for that FIFO, the specified function is posted for execution.

The SEM Model

The SEM model is provided as an extension to the use of HeronWaitIo. When
HeronWaitIo is used to test for the completion of a transfer, it will block the task within
which it is called. When HeronWaitIo blocks it will also not cause a task switch, and will
therefore block all other tasks until the transfer completes.

When you need to block waiting for the completion of a transfer, but still want all other
tasks to be able to run, you should use the SEM model.

By opening a FIFO handle using the function HeronSemOpenFifo, a semaphore can be
attached to the completion of a transfer for that FIFO. When opening a FIFO in this way,
HeronTestIo and HeronWaitIo are no longer required. Instead, a user supplied
DSP/BIOS semaphore object is attached to the FIFO handle. After each call to
HeronRead or HeronWrite a SEM_pend function call should be used to block the user
task. When the transfer completes for that FIFO, the semaphore is posted, unblocking the
previously blocked task.

11 HUNT ENGINEERING HERON-API USER MANUAL

The SIO Model

The Streaming I/O model, or ‘SIO’ model is provided for the transfer of data to or from
high speed I/O modules.

The SIO model is an extension of the SEM model, in that the transfer is data is performed
using semaphores. However, the Streaming I/O functions further separate the user
application from the read or write process by implementing queues of data buffers between
the application and the opened FIFO.

Each call to a Streaming I/O function involves the transfer of a used buffer into one queue,
and the return of a second new buffer from a second queue.

By opening a FIFO handle using HeronSioOpenFifo, the asynchronous Streaming I/O
(SIO) functions HeronSioRead and HeronSioWrite can be used for the transfer of
data.

Unlike the functions HeronRead and HeronWrite, these SIO functions will block until
the transfer is complete, by using a DSP/BIOS semaphore. The SIO functions are used on
their own in that they do not require the use of HeronTestIo or HeronWaitIo.

As the SIO functions use a semaphore to block waiting for buffers to be available from the
SIO queues, they must be used only with the context of a task.

12 HUNT ENGINEERING HERON-API USER MANUAL

An Example of FIFO Access with the WaitIo Model

The HeronRead and HeronWrite functions of the HERON-API are asynchronous
which means that after the read or write has been started, the transfer will continue in the
background enabling the user application to perform processing in the foreground before
returning to check whether the I/O has completed.

The HERON-API FIFO Access functions also allow transfers from multiple FIFOs to be
performed in parallel to each other and to the processing of the user application.

The following code example shows how this can be achieved with the HERON-API. In
this example, three transfers are being performed in parallel. Two transfers are receiving
data from FIFOs 1 and 2, and one transfer is sending data to FIFO 2. Once the transfers
have all been started, some user processing can begin while the transfers complete in the
background. Once the processing is complete, the transfers can be checked to wait for
completion through the use of the function HeronWaitIo.

In the example, if an error occurs at any stage, the program simply exits.

/* Open the FIFOs */
handle_a = HeronOpenFifo(1, “r”);
handle_b = HeronOpenFifo(2, “w”);
handle_c = HeronOpenFifo(2, “r”);

/* Check the HeronOpenFifo calls were successful */
if (handle_a == NULL) exit(0);
if (handle_b == NULL) exit(0);
if (handle_c == NULL) exit(0);

/* Start three transfers (two reads and one write) */
status_a = HeronRead(handle_a,buffer_a,size_a);
status_b = HeronWrite(handle_b,buffer_b,size_b);
status_c = HeronRead(handle_c,buffer_c,size_c);

/* Check that the transfers were started successfully */
if (status_a != HERON_IO_IN_PROGRESS) exit(0);
if (status_b != HERON_IO_IN_PROGRESS) exit(0);
if (status_c != HERON_IO_IN_PROGRESS) exit(0);

/* Do some processing here */

/* Wait for each transfer to complete */
status_a = HeronWaitIo(handle_a);
status_b = HeronWaitIo(handle_b);
status_c = HeronWaitIo(handle_c);

/* Check there were no problems */
if (status_a != HERON_OK) exit(0);
if (status_b != HERON_OK) exit(0);
if (status_c != HERON_OK) exit(0);

13 HUNT ENGINEERING HERON-API USER MANUAL

An Example of FIFO Access with the TestIo Model

The TestIo model is used in a very similar way to the previous example of WaitIo, the
difference being that it is possible to use a loop that tests for completion each time a
portion of processing is done.

For an example of this, look at the HUNT ENGINEERING CD, choose Getting Started
and then HERON-API examples where you will see examples of all the models.

An Example of FIFO Access with the SWI Model

To use the SWI model, a function must be created that will run each time a transfer
completes. In addition, a SWI object must be created. The properties of the SWI object
should be set so the new SWI function is run each time that SWI is posted.

With this done, the SWI object is attached to the appropriate FIFO through a call to the
function HeronSwiOpenFifo.

The SWI function that is set up should then contain a call to HeronRead or HeronWrite,
so that as each transfer is completed, the next begins.

For an example of this, look at the HUNT ENGINEERING CD, choose Getting Started
and then HERON-API examples where you will see examples of all the models.

An Example of FIFO Access with the SEM Model

To use the SEM model, a SEM object must be created. With this done, the SEM object
must be attached to the appropriate FIFO through a call to the function
HeronSemOpenFifo.

Then a task is required that calls HeronRead or HeronWrite, and then calls the
DSP/BIOS function, SEM_pend. The call to SEM_pend will ensure that the task will block
until the transfer completes. When SEM_pend returns, the task can then start the next
transfer.

For an example of this, look at the HUNT ENGINEERING CD, choose Getting Started
and then HERON-API examples where you will see examples of all the models.

14 HUNT ENGINEERING HERON-API USER MANUAL

An Example of FIFO Access with the Streaming I/O Model

The HeronSioRead and HeronSioWrite functions of the HERON-API are provided
to transfer data to and from the HERON FIFOs using Streaming I/O (SIO).

These functions are asynchronous, in that the transfer continues in the background, while
processing continues in the foreground.

However, rather than being used to directly transfer a buffer to or from a HERON FIFO,
the SIO functions are used to pass data between two queues managed by the HERON-API.
By using buffer queues, the transfer of data between the FIFOs and the user application is
further de-coupled in comparison to the asynchronous FIFO access functions.

The HERON-API is used to manage the transfer of data between the queues and the
FIFOs. It works by repeatedly transferring many buffers of the same size. As soon as one
buffer transfer is complete, the next is started.

This leaves the user application free to pass buffers to and from the other end of the two
buffer queues at its own rate.

For each FIFO opened to use SIO, two queues are created. One for buffers to be passed to
the HERON-API, and one for buffers passed from the HERON-API to the user
application.

If the FIFO is opened for reading, the first queue is used to pass empty buffers to the
HERON-API, and the second queue is used to receive full buffers from the HERON-API.

Conversely, if the FIFO is opened for writing, the first queue is used to pass full buffers to
the HERON-API, and the second queue is used to receive empty buffers back from the
HERON-API.

The following code example shows how SIO can be used to read data from a FIFO. In this
example, repeated transfers are performed using many buffers of the same size. Once the
first transfer is started the HERON-API will continue to receive data in the background. As
each buffer is filled and passed back to the user application in the second queue, a new
transfer is automatically started in the background using a buffer from the first queue. For
each time round the loop, one new buffer of data is passed to the user process, and the
previous used buffer is returned to the SIO stream.

/* Declare a data pointer */
unsigned int *data;

/* Open FIFO 2 for reading using SIO */
handle = HeronSioOpenFifo(2, “r”, &sio_obj, (Ptr *)&data);

/* Check the HeronSioOpenFifo call was successful */
if (handle == NULL) exit(0);

/* Start the transfer and processing of data */
for (i=0;i<N;i++) {
 status = HeronSioRead(handle,(Ptr *)&data);

 /* Do some processing here on the data */
 /* pointed to by the pointer ‘data’ */
}
The following code example shows how SIO can be used to write data to a FIFO. In this

15 HUNT ENGINEERING HERON-API USER MANUAL

example, repeated transfers are performed using many buffers of the same size. Once the
first transfer is started the HERON-API will continue to output data in the background. As
each buffer is filled and passed to the SIO stream in the first queue, an empty buffer is
returned from the second queue.

For each time round the loop, one new buffer of data is passed to the SIO stream for
output, and another empty buffer is returned.

/* Declare a data pointer */
unsigned int *data;

/* Open FIFO 2 for writing using SIO */
handle = HeronSioOpenFifo(2, “w”, &sio_obj, (Ptr *)&data);

/* Check the HeronSioOpenFifo call was successful */
if (handle == NULL) exit(0);

/* Start the transfer and processing of data */
for (i=0;i<N;i++) {
 /* Do some processing here to */
 /* create an output buffer */

 /* Exchange buffer pointers */
 status = HeronSioWrite(handle,(Ptr *)&data);
}

16 HUNT ENGINEERING HERON-API USER MANUAL

User DMA Management

If the user is going to use a DMA channel of the processor, a DMA channel must be
claimed from the HERON-API before a DMA transfer is programmed. This will ensure
that the user DMA does not conflict with the FIFO accessing functions of the HERON-
API.

There are three DMA management functions. The first, HeronDmaClaim must be called
to allocate a DMA channel to the user.

HERON-API uses only DMA reload register A, leaving reload register B free for the user
to use when programming DMAs that have been claimed.

The second function HeronDmaFree should be called after the user has finished using a
DMA channel. This function will return control of the DMA channel to the HERON-API.

The third function HeronInstallIsr is provided so that an interrupt service routine can
be installed on a specific hardware event. This function should be used to add an interrupt
function to a DMA complete interrupt that is associated with a DMA that was claimed with
HeronDmaClaim. Alternatively, this could be used to add an interrupt service routine
dynamically during program execution, rather than statically through the DSP/BIOS
Configuration Database file (the .cdb file). In all other cases, an interrupt should be
installed by setting up an appropriate ISR in the DSP/BIOS .cdb file.

Hardware Access Functions

The hardware access functions do not really have a structure, but merely provide access to
hardware features of the HERON modules.

These functions do not perform any device protection using an open/close sequence.

17 HUNT ENGINEERING HERON-API USER MANUAL

HERON Serial Bus Functions

Each HERON module has a HERON Serial Bus (HSB) device that can be used to send
and receive messages with other HSB devices located on other modules or on the carrier
board.

As with the FIFO Access functions, the HSB device must first be opened before it is used.
Once the HSB device has been successfully opened the user is given a HSB handle with
which to operate on that device. Any subsequent attempts to open that device will fail,
ensuring that a program cannot mistakenly use the same HSB device twice and cause
program errors.

After successfully opening the HSB device, messages can then be sent and received to or
from any other HSB device in the system.

The HERON-API includes two main functions for transmitting messages using the
HERON serial bus (HSB). The first function HeronHsbSendMessage is used to send
messages from the module to another hardware device and the second function
HeronHsbReceiveMessage is used to receive messages.

The process of sending or receiving a message is further split into three parts, starting the
message, sending or receiving multiple blocks of message data, and ending the message.
The two main HSB functions are each implemented through calls to six lower level
functions that handle the three parts of each message transmission.

Please note, although it is possible to directly access these lower level HSB functions using
the HERON-API, it is recommended that this is only done when absolutely necessary. For
the majority of users it is recommended that only the main HSB message functions are
used.

When all message transfers have been completed, the HSB device should then be “closed”.
The operation of closing the HSB device returns it to a state where another process may re-
open that device and perform a new task.

HSB Messages
To use the HERON Serial Bus, you need to adhere to a protocol. That is, both the sending
end and the receiving end must agree to the format of each message transmitted.

There is an implicit message format that is used by the HSB functions provided in the
HERON-API. As such, any use of the HSB functions must build upon this basic format.

All HSB messages must start with an address byte. This is used to identify the intended
destination for the message. This address is formed from information such as the board ID
and the slot ID of the intended message recipient.

The HSB functions that are provided automatically create this address byte using the
‘board’ and ‘slot’ function arguments.

Following the address byte two data bytes are transmitted. The first of these bytes is used to
define the ‘message type’, and the second byte defines the ‘address’ of the device
initiating the message.

The message type byte can be used to define what to do with the optional data bytes that
follow, and whether a reply is required. The second ‘address’ byte can be used to form the
new address if message is to be sent in reply to the original message.

18 HUNT ENGINEERING HERON-API USER MANUAL

With these bytes sent, any number of optional data bytes may follow.

The Message Type
For many applications the message type is an important value that defines the exact
operation that is to take place when using HSB. A simple example is the message type of 1.
This value is used by HUNT ENGINEERING to indicate a Module Type Query.

Messages transmitted with this message type will typically be used to find out information
about the type of module that is located in a particular slot of a carrier board. The Module
Type Query message is a simple message that has no optional data bytes, just the address,
the message type (set to 1), and the address to reply to.

Other examples are the transmission of a serial bitstream to a FPGA located on a HERON-
FPGA module. This message (message type 3) will always containing as many optional data
bytes as there are bytes in the bitstream for the FPGA.

If the sender and receiver processes are both your code, no pre-defined message type is
needed, essentially you may define your own. It is recommended however that you avoid
the message types already used by HUNT ENGINEERING software to prevent
confusion.

HUNT ENGINEERING defines message numbers starting from one upwards, so using
message types greater than 128 will avoid confusion. The message protocol used by HUNT
ENGINEERING is defined in a separate document.

HSB and EM2 Inter-Board Connectors
Note that if you send a message across EM2 inter-board connectors to another board, it
may happen that error HERON_HSB_NO_RESPONSE is returned. This is not necessarily a
fault. If two HSB messages are sent in quick succession, the HSB on the other board may
still be busy when you start the next message. The HSB that is busy will cause the function
to return error message HERON_HSB_NO_RESPONSE.

In such situations, send the whole message again. If you use HeronHsbSendMessage,
and it returns HERON_HSB_NO_RESPONSE, execute HeronHsbSendMessage again using
the same parameters. With version 3.9 of the API, you can also use a function that
automatically retries sending an HSB message upon error HERON_HSB_NO_RESPONSE.
This is the HeronHsbSendMessageEx function. Parameter retries in this function
allows you to specify how many times you want to retry sending the message.

If you use HeronHsbStartSendMessage and HeronHsbSendMessageData to send a
message, the error HERON_HSB_NO_RESPONSE may be returned when HeronHsbSend-
MessageData is called. To retry, you need to resend the whole message, that is, first again
call HeronHsbStartSendMessage, then all calls to HeronHsbSendMessageData as
you did in the message you tried to send the first time, using the same parameters.

In my experience, with two boards connected by two EM2 inter-board connectors, one
retry is enough. With more than 2 boards connected up you may need perhaps 2 or 3
retries, as latencies are a bit longer.

19 HUNT ENGINEERING HERON-API USER MANUAL

Selecting the Right Library for your Application

The HERON-API is provided in library form that must be linked with your application.
There are four different libraries that are provided to support different combinations of
data access and code access within the library.

When building your application you will only need to link to one of the four libraries
depending on the requirements of your application. The library that you should link to is
discussed in this section.

When developing your application there are two main points to consider that affect the
memory model you compile with and the libraries that you link to.

The first is how data is placed and accessed, and the second is how code is placed and
accessed.

Data Access
The C compiler creates a default section in which it places all global and static data. This
section is called .bss. With the creation of this section, the C compiler also generates a
pointer to the beginning of this section. This pointer is called the Data Page Pointer (DP).

When you build your application for the default compiler memory model (the small
memory model), the compiler will by default place all global and static data in the .bss
section and will access that data using the near access method. The near access method
will access this data relative to the Data Page Pointer, and each access will take one
assembly instruction. This is the most efficient form of data access.

With the small (default) memory model, there is a requirement that the size of the .bss
section is less than 32Kbytes. This is because for the small memory model, a near data
access uses an offset from the Data Page Pointer, where this offset is limited to 32Kbytes in
size.

An alternative method of data access is the far access method. The far access method can
be used by compiling with one of the large memory model options or by using the far
keyword when declaring data. By accessing data as far, that data is now no longer placed in
the .bss section, and there is now no 32Kbyte limit on the size of all far data.

However, unlike near accesses, far accesses are less efficient as each access will take three
assembly instructions to perform. The extra instructions will increase the time the access
takes to complete, and will increase the size of the program code.

So there is a trade-off between the use of near data and far data. Near data offers the best
performance but a program is limited to having 32Kbytes of near data at most.

Far data does not have this 32Kbyte limit, but offers slower performance than near data.

Typically, when developing your application you will want to access the most important
variables in your program as near data, and access the rest as far data, while ensuring that
the total amount of near data you use is less than 32Kbytes.

The simplest way to achieve this is to globally define data that you want to access as near,
and dynamically allocate the remaining far data using functions such as the TI provided
Run-Time-Support (RTS) function, malloc. Such a program would be built using the
default, small memory model.

20 HUNT ENGINEERING HERON-API USER MANUAL

Code Access
When a function is called, the program must perform a branch from the function that is
currently executing to the new function that has been called. This branch can be performed
in one of two ways.

The first method is generated by the compiler adding a relative offset to the current
program counter in order to perform the branch. This method is the near access method,
and takes one assembly instruction to perform. It is the most efficient form of function call,
and hence offers the best performance.

The second method is generated by the compiler forming an absolute address to which the
program counter will branch. This method is the far access method. It is not as efficient as
a near function call as three assembly instructions are required. The extra instructions will
increase the time the function call takes to complete, and will increase the size of the
program code.

When using a near function call, there is a requirement that the relative offset for the
branch is less than 1Mword from the current program counter position. If this requirement
is not met, a far function call is required.

When building with the small (default) memory model, all function calls are treated as near.
By compiling with one of the large memory model options or by using the far keyword
when declaring functions, a far call will be used.

As a general rule, far function calls should be used where the total code size is greater than
1Mword (or 4Mbytes), or if code sections are being placed in separate memory segments.
Where code is placed in more than one memory segment, this will usually result in an the
address span between the code in one segment and the code in another exceeding 1Mword.
In this case, far function calls must be used.

Choosing a Library
There are four HERON-API libraries, where each uses a different combination of data
access method and code access method. You must only link to one of these libraries
according to the requirements of your application.

When choosing a library it is recommended that you start with the library herons.lib.
This library is expected to satisfy the requirements of most applications, but where it does
not you should choose one of the other libraries as discussed below.

The library herons.lib has been built to access all data as near. As such, all global data
used by this version of the HERON-API library is placed in the default section .bss. The
only exception to this is the global error variable heronerr which is always declared as far
and is placed in the section ‘heronapi_data’. All functions calls are performed as near.

The herons.lib library should be used where the total amount of global and static data
in your application plus the HERON-API global data is less than 32Kbytes, and where the
total size of the program code is less than 1Mword (or 4Mbytes). Note, all code sections
should be placed in the same memory segment. In this case, your application should be
built using the default small memory model to achieve the best performance.

Where the total amount of application code exceeds 1Mword, or if code is being placed
across several memory segments, then the application should be built to use far function
calls. In this case you should build with the memory model option –ml1, and you should
link to the library heronl1.lib. This version of the library will access data as near and

21 HUNT ENGINEERING HERON-API USER MANUAL

will perform far function calls.

When you need your application to use all of the .bss section you should link to the
library heronl0.lib. This version of the library places all of the library global data in a far
data section named ‘heronapi_data’. By using this library, your application is free to use
all of the .bss section. In this case you can build with small memory model, but please
ensure that you keep the size of the .bss section to less than 32Kbytes. This library will
perform all function calls as near.

If you want to combine the features of both the heronl0 and heronl1 libraries, you can
use the library heronl3.lib. This version of the library will place all library global data in
a far data section named ‘heronapi_data’. The library will perform all function calls as
far. In this case you should build your application with the memory model option –ml1,
keeping the size of the .bss section to less than 32Kbytes.

The table below summarises when you would use each library.

Is the size of the .bss
section <32Kbytes inc.

HERON-API data?

Are all code sections
to be placed in the

same memory
segment?

Is the total
code size

<1Mword?

Yes Yes Yes Use herons.lib

Yes No Yes Use heronl1.lib

Yes Yes No Use heronl1.lib

No Yes Yes Use heronl0.lib

No No Yes Use heronl3.lib

No Yes No Use heronl3.lib

22 HUNT ENGINEERING HERON-API USER MANUAL

Linking Issues

When linking your application the linker will generate error messages if the rules for near
data accesses or near function calls are broken.

If you are using the small memory model and are accessing data in the .bss section, the
following error message will be generated when the size of the .bss exceeds 32Kbytes.

>> relocation value truncated at 0x?? in section .text, file
example.obj

In this case, you have too much global and static data in your application. This problem can
be solved by either dynamically allocating some of the data using functions such as
malloc, or by declaring some of your data as far, or by using a different HERON-API
library that doesn’t use the .bss section.

If you try to call a function using a near function call, and if that function is too far to be
reached with the normal program counter relative (PC-relative) branch instruction, you will
see the following linker error message:
>> PC-relative displacement overflow. Located in file.obj,
section .text, SPC offset ??

In this case, you are building your application to use near function calls and either the
amount of code in your application exceeds 1Mwords, or you have placed some code
sections in one memory segment, and other code sections in a separate memory segment.

Other than reducing the size of your code, the simplest way to remove this problem is to
build your application using the –ml1 memory model in order to use far function calls.

When re-building your application with this memory model, you will also need to link to a
different HERON-API library. If you were previously linking to the library herons.lib
then you will need to use heronl1.lib instead. However if you were linking to the library
heronl0.lib then you will need to use heronl3.lib.

23 HUNT ENGINEERING HERON-API USER MANUAL

Building your Application

This section describes how you would build a typical application that uses the HERON-
API by starting a new project in Code Composer Studio.

When you are building an application that uses the HERON-API your application will be
using DSP/BIOS. DSP/BIOS is a multi-threading environment that is provided as part of
the Code Composer Development Environment. It also provides services for configuring
processor features such as hardware interrupts and timers.

DSP/BIOS is included in Code Composer Studio, along with the Compiler tools for the
’C6000, and all users of HERON hardware will be able to use it.

This section assumes that the user has installed Code Composer Studio and followed the
confidence checks. The user should also be familiar with using Code Composer Studio.

An application that uses DSP/BIOS is based around a Configuration Database file, or
.cdb file. This file is used to define and control the various elements that make up a
DSP/BIOS application.

When Code Composer Studio has been set up on your machine, copies of the HERON
.cdb files should exist in the ‘c6000\bios\include’ directory. This directory will be
under the directory in which Code Composer Studio was installed, and is typically ‘c:\ti’.

These files will be automatically copied to this directory by the Code Composer Studio
installation. However, if this installation was not successful and these files do not exist in
this directory, then you will need to copy the files by hand from the directory
‘%HEAPI_DIR%\heron_api\cmd’.

In Code Composer Studio, select ‘Project New’ and choose the path and name for your
project. Remember this name as you must use the same name when you save the .cdb file.

Select ‘File New DSP/BIOS Config’ and choose the correct .cdb file for your
hardware. The .cdb file will have a name that uses your HERON module number and
possibly an option that is available for that module.

In the DSP/BIOS Configuration Tool, right click on Global Settings properties, and check
that the CLKOUT property is set to the frequency of your processor module. This is used
by DSP/BIOS to calculate the correct settings for the timer period.

This .cdb file has some items set up which are for the HERON-API. DO NOT
CHANGE THESE!

Use ‘File Save’ to save the .cdb file to your project directory. This file must have the
same name as the project name you have used, with the extension .cdb.

Saving the .cdb file wll generate a .cmd file, but that file will not control the placement of
the sections ‘heronapi_code’ and ‘heronapi_data’. For this reason there is a linker
command file (a .cmd file), in the directory ‘%HEAPI_DIR%\heron_api\cmd’ that will
be called by your HERON module number and have ‘_bios.cmd’ at the end. i.e.
‘heronx_bios.cmd’. You need to copy this file to your project directory.

Now add the source files to the project and the .cdb file. Also add the
‘heronx_bios.cmd’ linker command file. In this linker command file is a line that
references the linker command file that is generated when the .cdb file is saved. This line
will need to be edited to the replace the asterisks with the correct part of the DSP/BIOS
linker command file-name.

24 HUNT ENGINEERING HERON-API USER MANUAL

The section in this user manual entitled ‘Selecting the Right Library for your Application’
discusses which HERON-API library should be used for your application.

When you have selected a HERON-API library to link to, this library must be added to the
project. Add the appropriate library to the project. The libraries are located in the directory
‘%HEAPI_DIR%\heron_api\lib’.

Depending on the choice of library you may wish to build the application for a memory
model other than the default small memory model. If so, edit the Project Options to select
the appropriate memory model.

Go to Project Options and add ‘%HEAPI_DIR%\heron_api\inc’ to the include path.

The .cdb file you have selected will actually place all code into external memory, and will
switch on the program cache. This is a good general purpose setting, but might need to be
changed for your application.

You are now ready to build your HERON-API application, assuming that where necessary,
you have set any application specific settings in the Configuration database file.

Building an Application for Use with the Server/Loader
If your application is going to use the HUNT ENGINEERING Server/Loader, you will
need to follow the description given above, and then make the following changes.

In place of the linker command file ‘heronx_bios.cmd’ you should use the file
‘heronx_slbios.cmd’. Again, edit this linker command file so that it includes the linker
command file generated when you saved the .cdb file. Please check that the path is correct
for the inclusion of the Server/Loader library. If a different Server/Loader library is
required, edit the line to specify the alternate library.

Ensure that you do not add the Server/Loader library to the project. The inclusion of this
library must only come from the entry in the linker command file.

25 HUNT ENGINEERING HERON-API USER MANUAL

How it Works With DSP/BIOS

The HERON-API uses some of the features DSP/BIOS. As such, any application that uses
the HERON-API will also use DSP/BIOS, and as a result, each project will include a
DSP/BIOS configuration database file (a .cdb file).

There are four important DSP/BIOS objects that are required by the HERON-API. These
objects are automatically included when you select one of the HERON DSP/BIOS
Configuration template .cdb files.

The first required object is the HRN_prd object. The HRN_prd object is used to run a
periodic function in the HERON-API library. This function is used to keep FIFO transfers
running smoothly. The template .cdb files use a timer tick set up on Timer0, that runs
every 1ms.

The HRN_prd object uses this timer tick to run a function called ‘HeronxTick’ where x is
the number of the HERON module you are using. The function is run every 2ms.

You are free to change the way the timers are used in the .cdb file, but when doing so,
please ensure one of the timers is used to drive a periodic tick, and please select a timer
value that allows the HeronxTick function to run approximately every 2ms.

The next three required objects are three User Defined Devices. Each User Defined Device
defines a Streaming I/O driver. Two of the devices define FIFO read drivers and one
device defines a FIFO write driver. When creating an SIO object to use with HeronSioRead
or HeronSioWrite, one of these three devices must be selected.

Device ‘Dx0’ is a driver for reading from a FIFO using a trash buffer, device ‘Dx1’ is a
driver for reading from a FIFO without using a trash buffer and device ‘Dx2’ is a driver for
writing to a FIFO. The x in the device name represents the HERON module type you are
using. For example, when using a HERON1 you would use devices ‘D10’, ‘D11’ and ‘D12’.

In addition to the HRN_prd object and User Defined Devices, the HERON-API uses
eight of the hardware interrupts listed in the Hardware Interrupt Service
Routine Manager. These hardware interrupts are required by the HERON-API, and
therefore must not be used by the user. As such, the HERON template .cdb files include
control of these interrupts.

The only exception to this rule is that it is possible to dynamically install an ISR on one of
the DMA complete (DMA_INTx) interrupt cases. This may be done by calling
HeronInstallIsr after a DMA channel has been successfully claimed from the
HERON-API through a call to the function HeronDmaClaim.

The HERON-API can also be used to post a software interrupt using a SWI object created
in your .cdb file, or post a semaphore using a SEM object.

By using the function HeronSwiOpenFifo to open a FIFO handle, a SWI object can be
attached to that FIFO handle. This allows the HERON-API to post a software interrupt
(SWI) each time a transfer on that FIFO completes. The use of software interrupts is
further discussed in the description of the function HeronSwiOpenFifo.

Similarly by using the function HeronSemOpenFifo to open a FIFO handle, a SEM
object can be attached to that FIFO handle. This allows the HERON-API to post a
semaphore on completion of a FIFO transfer. The use of semaphores is further discussed
in the description of the function HeronSemOpenFifo.

26 HUNT ENGINEERING HERON-API USER MANUAL

Using the HERON-API Inline Functions

The HERON-API provides several functions as inline functions contained in the header
file for the HERON module type you are using. For example, if you are using a HERON1
module, you will include the header file heron1.h, which will contain the inline function
definitions.

An inline function is advantageous for several reasons. By inlining a function into the code
that calls it, the overhead of a function call is avoided and the optimizer is free to optimize
the function in context with the surrounding code.

Inline function expansion is performed when the compiler is invoked with optimization
(using the –x option) and the inline keyword is found in a function definition.

Therefore, by including the appropriate heronx.h header file and compiling with the
optimizer, the functions contained in the HERON-API header file will be inlined into your
application.

In general, when using the optimizer with the inline HERON-API functions, the
performance of your application will be improved, but this will also increase code size, as
each call to an inline function will result in that code being added at the point of the call.

If your application contains many calls to functions that are defined as inline, you may
experience long compile times and large code size due to the many replications of the inline
functions. If this is the case you may want to prevent inlining from taking place.

The automatic inlining of functions can be prevented in many ways. By not using the
optimizer when compiling, inline functions are kept as function calls. However, this
approach also results in a general degradation of performance as no optimization is
performed.

Alternatively, by defining the text ‘HERON_NO_INLINE_FUNCTIONS’ as shown below,
#define HERON_NO_INLINE_FUNCTIONS

the automatic inlining of HERON-API functions is disabled. Please note, the definition of
this text must occur before the inclusion of the HERON-API header file heronx.h. By
defining this text, you are free to continue using the optimizer when you compile your
application.

27 HUNT ENGINEERING HERON-API USER MANUAL

HERON-API Functions

FIFO Access Functions

HeronFIFO *HeronOpenFifo(int fifono, char *s)
For opening a FIFO to use with HeronTestIo or HeronWaitIo, use the
HeronOpenFifo function, where fifono is a number from 0 through 5 of the HERON
FIFO to open.

The argument s is a pointer to a string that can contain,

‘r’ - open for reading
‘w’ - open for writing
‘u’ - force the CPU to have priority over this DMA (if used)
‘m’ - force this DMA to have priority over the CPU (default case)
‘d’ - force the use of a dedicated DMA for this fifo

A simple example is

HeronFIFO *fifo;
fifo = HeronOpenFifo(2, “r”);
if (fifo == NULL)
{
 printf(“Cannot open fifo 2. Error %d\n”, heronerr);
 srv_exit(0); /* HUNT ENGINEERING Server/Loader exit */
}

This code snippet shows that FIFO number 2 is opened for reading. To open for writing,
you would use a specifier character ‘w’ rather than ‘r’. If the call to HeronOpenFifo is
successful, a FIFO handle is returned. The FIFO handle should be used as a parameter for
subsequent calls to HERON-API functions.

A NULL value will be returned if the call fails. In this case, the global error variable
heronerr will specify in more detail what problem was encountered.

Dedicated DMA
You can also reserve a DMA channel for exclusive use by a FIFO by using the ‘d’ option of
HeronOpenFifo. For example,
fifo = HeronOpenFifo(2, “rd”);

will open FIFO number 2 and will dedicate a DMA engine to it. If there are no DMA
engines available (because the user has claimed all of them, or too many other opens have
been made with this option) the HeronOpenFifo function will return NULL. The
dedicated option is provided for use in the case that you have a high bandwidth non-
blocking transfer that may lose data if a transfer is not ready to start when a FIFO flag
indicates data is available.

If the dedicated DMA is not used in this case and several transfers are using the DMAs the
delay while waiting for a DMA engine to become free may result in the loss of data. This
option does not necessarily provide more bandwidth but guarantees availability of a DMA

28 HUNT ENGINEERING HERON-API USER MANUAL

engine to perform the transfer.

You can open 12 FIFOs at most. (A HERON module has 6 FIFOs for input and 6 for
output.)

DMA/CPU Priority
Each of the DMA engines on the ’C6201 and ’C6701 can be programmed to have the CPU
have priority over the DMA, or to have the DMA have priority over the CPU.

Using the specifier ‘u’ you can set the CPU to have priority.

Specifier ‘m’ allows you to specify that DMA has priority (this is the default).

For example:
fifo = HeronOpenFifo(2, “ru”);

Assigns that CPU should have priority over the DMA for this FIFO.

Error Conditions
The global error variable heronerr is used to indicate which error condition has occurred
when a call to HeronOpenFifo is unsuccessful.

If the argument fifono is outside the expected range (0 to 5) the function call will return
NULL, and the global error variable heronerr will be set to the value defined by
HERON_INVALID_FIFO_NO. The values for heronerr are defined in the header file for
the HERON module type you are using.

If a NULL pointer is provided for the string argument s the function call will return NULL,
and the global error variable heronerr will be set to the value defined by
HERON_NULL_POINTER.

If the function call fails due to a lack of resources, the global error variable heronerr will
be set to the value defined by HERON_NO_RESOURCE. This can occur if a call to
HeronOpenFifo is made when all DMA channels have either been claimed by a call to
HeronDmaClaim or when all DMA channels have been dedicated by previous calls to
HeronOpenFifo.

If an invalid character is contained in the string pointed to by the argument s, the global
error variable heronerr will be set to HERON_INVALID_CHARACTER. The valid
characters are ‘r’, ‘w’, ‘m’, ‘u’ and ‘d’.

If both ‘r’ and ‘w’ are specified in the string argument the global error variable heronerr
will be set to HERON_RW_NOT_SUPPORTED. It is incorrect to open a FIFO for both
reading and writing. The HERON-API will use one FIFO handle for a FIFO opened for
reading and another FIFO handle for a FIFO opened for writing. Therefore, for reading
and writing the same FIFO number, two calls should be made to HeronOpenFifo. One
call should be made with the ‘r’ option only and one call with the ‘w’ option only.

It is also an error to not specify either ‘r’ or ‘w’ as part of the string argument. Doing so will
cause the function call to fail with the global error variable heronerr set to
HERON_NO_IO_SPECIFIED.

If a call to HeronOpenFifo is made for a FIFO that has already being opened, then the
function call will fail, and the global error variable heronerr will be set
HERON_FIFO_OPEN.

29 HUNT ENGINEERING HERON-API USER MANUAL

HeronFIFO *HeronSwiOpenFifo(int fifono, char *s, SWI_Obj *swi)
For opening a FIFO that is to use software interrupts to notify of completion, use the
HeronSwiOpenFifo function.

Where fifono can be 0 through 5, and is the number of the HERON FIFO to open.

The argument s is a pointer to a string that can contain,

‘r’ - open for reading
‘w’ - open for writing
‘u’ - force the CPU to have priority over this DMA (if used)
‘m’ - force this DMA to have priority over the CPU (default case)
‘d’ - force the use of a dedicated DMA for this fifo

The argument swi is a pointer to a DSP/BIOS SWI object, created in the .cdb file you
are using. The SWI object pointed to by this argument must define the function that is to
be called when a transfer completes on the opened FIFO.

A simple example is

HeronFIFO *fifo;
extern far SWI_Obj user_swi;
fifo = HeronSwiOpenFifo(2, “r”, &user_swi);
if (fifo == NULL)
{
 printf(“Cannot open fifo 2. Error %d\n”, heronerr);
 srv_exit(0); /* HUNT ENGINEERING Server/Loader exit */
}

This code snippet shows that FIFO number 2 is opened for reading. To open for writing,
you would use a specifier character ‘w’ rather than ‘r’. If the call to HeronSwiOpenFifo is
successful, a FIFO handle is returned. The FIFO handle should be used as a parameter for
subsequent calls to HERON-API functions.

A NULL value will be returned if the call fails. In this case, the global error variable
heronerr will specify in more detail what problem was encountered.

Using a Software Interrupt
When reading or writing from a FIFO that has been opened with the function
HeronOpenFifo, the functions HeronTestIo and HeronWaitIo are used to test or
wait for the completion of a FIFO transfer.

By using the function HeronSwiOpenFifo, the completion of a transfer can be set up to
automatically run a function that you have supplied.

The argument swi is a pointer to a DSP/BIOS software interrupt (SWI) object that has
been created in the .cdb file you are using. When a transfer completes on the FIFO
opened by this function, a software interrupt will be posted using the SWI object supplied
in the call to HeronSwiOpenFifo.

When you create the SWI object in your .cdb file, you will need to edit the SWI object
properties to set the name of the function that you want to be run on the completion of the
FIFO transfer. Also, you must include a reference to this object in your source code so that
a pointer to that object can be passed to the function HeronSwiOpenFifo.

30 HUNT ENGINEERING HERON-API USER MANUAL

For example, if using a SWI object named swi0, that declares a function called
transfer_done, the following code would be required to attach that SWI object to the
FIFO handle:

HeronFIFO *fifo;
extern far SWI_Obj swi0;

main_task() {

 int status;

 fifo = HeronSwiOpenFifo(2, “r”, &swi0);

 status = HeronRead(fifo, buf, 1024);

}

void transfer_done() {

 printf(“Fifo 2: transfer complete\n”);

}

Dedicated DMA
You can also reserve a DMA channel for exclusive use by a FIFO by using the ‘d’ option of
HeronSwiOpenFifo. For example,
fifo = HeronSwiOpenFifo(2, “rd”);

will open FIFO number 2 and will dedicate a DMA engine to it. If there are no DMA
engines available (because the user has claimed all of them, or too many other opens have
been made with this option) the HeronSwiOpenFifo function will return NULL. The
dedicated option is provided for use in the case that you have a high bandwidth non-
blocking transfer that may lose data if a transfer is not ready to start when a FIFO flag
indicates data is available.

If the dedicated DMA is not used in this case and several transfers are using the DMAs the
delay while waiting for a DMA engine to become free may result in the loss of data. This
option does not necessarily provide more bandwidth but guarantees availability of a DMA
engine to perform the transfer.

You can open 12 FIFOs at most. (A HERON module has 6 FIFOs for input and 6 for
output.)

DMA/CPU Priority
Each of the DMA engines on the ’C6201 and ’C6701 can be programmed to have the CPU
have priority over the DMA, or to have the DMA have priority over the CPU.

Using the specifier ‘u’ you can set the CPU to have priority.

Specifier ‘m’ allows you to specify that DMA has priority (this is the default).

For example:
fifo = HeronSwiOpenFifo(2, “ru”);

Assigns that CPU should have priority over the DMA for this FIFO.

31 HUNT ENGINEERING HERON-API USER MANUAL

Error Conditions
The global error variable heronerr is used to indicate which error condition has occurred
when a call to HeronSwiOpenFifo is unsuccessful.

If the argument fifono is outside the expected range (0 to 5) the function call will return
NULL, and the global error variable heronerr will be set to the value defined by
HERON_INVALID_FIFO_NO. The values for heronerr are defined in the header file for
the HERON module type you are using.

If a NULL pointer is provided for the string argument s the function call will return NULL,
and the global error variable heronerr will be set to the value defined by
HERON_NULL_POINTER.

If a NULL pointer is provided for the SWI_Obj pointer argument swi the function call will
return NULL, and the global error variable heronerr will be set to the value defined by
HERON_NULL_POINTER.

If the function call fails due to a lack of resources, the global error variable heronerr will
be set to the value defined by HERON_NO_RESOURCE. This can occur if a call to
HeronSwiOpenFifo is made when all DMA channels have either been claimed by a call
to HeronDmaClaim or when all DMA channels have been dedicated by previous calls to
HeronSwiOpenFifo.

If an invalid character is contained in the string pointed to by the argument s, the global
error variable heronerr will be set to HERON_INVALID_CHARACTER. The valid
characters are ‘r’, ‘w’, ‘m’, ‘u’ and ‘d’.

If both ‘r’ and ‘w’ are specified in the string argument the global error variable heronerr
will be set to HERON_RW_NOT_SUPPORTED. It is incorrect to open a FIFO for both
reading and writing. The HERON-API will use one FIFO handle for a FIFO opened for
reading and another FIFO handle for a FIFO opened for writing. Therefore, for reading
and writing the same FIFO number, two calls should be made to HeronSwiOpenFifo.
One call should be made with the ‘r’ option only and one call with the ‘w’ option only.

It is also an error to not specify either ‘r’ or ‘w’ as part of the string argument. Doing so will
cause the function call to fail with the global error variable heronerr set to
HERON_NO_IO_SPECIFIED.

If a call to HeronSwiOpenFifo is made for a FIFO that has already being opened, then
the function call will fail, and the global error variable heronerr will be set
HERON_FIFO_OPEN.

32 HUNT ENGINEERING HERON-API USER MANUAL

HeronFIFO *HeronSemOpenFifo(int fifono, char *s, SEM_Obj *sem)
For opening a FIFO that is to use semaphores to notify of completion, use the
HeronSemOpenFifo function.

Where fifono can be 0 through 5, and is the number of the HERON FIFO to open.

The argument s is a pointer to a string that can contain,

‘r’ - open for reading
‘w’ - open for writing
‘u’ - force the CPU to have priority over this DMA (if used)
‘m’ - force this DMA to have priority over the CPU (default case)
‘d’ - force the use of a dedicated DMA for this fifo

The argument sem is a pointer to a DSP/BIOS SEM object, created in the .cdb file you
are using. The SEM object pointed to by this argument must define the semaphore that is
to be posted when a transfer completes on the opened FIFO.

A simple example is

HeronFIFO *fifo;
extern far SEM_Obj user_sem;
fifo = HeronSemOpenFifo(2, “r”, &user_sem);
if (fifo == NULL)
{
 printf(“Cannot open fifo 2. Error %d\n”, heronerr);
 srv_exit(0); /* HUNT ENGINEERING Server/Loader exit */
}

This code snippet shows that FIFO number 2 is opened for reading. To open for writing,
you would use a specifier character ‘w’ rather than ‘r’. If the call to HeronSemOpenFifo is
successful, a FIFO handle is returned. The FIFO handle should be used as a parameter for
subsequent calls to HERON-API functions.

A NULL value will be returned if the call fails. In this case, the global error variable
heronerr will specify in more detail what problem was encountered.

Using a Semaphore
When reading or writing from a FIFO that has been opened with the function
HeronOpenFifo, the functions HeronTestIo and HeronWaitIo are used to test or
wait for the completion of a FIFO transfer.

By using the function HeronSemOpenFifo, the completion of a transfer can be set up to
automatically post a semaphore that you have supplied.

The argument sem is a pointer to a DSP/BIOS semaphore (SEM) object that has been
created in the .cdb file you are using. When a transfer completes on the FIFO opened by
this function, a semaphore will be posted using the SEM object supplied in the call to
HeronSemOpenFifo.

You must include a reference in the source code to the SEM object that you have created in
the .cdb file you are using. This object can then be passed to the function
HeronSemOpenFifo.

For example, if using a SEM object named sem0, the following code would be required to

33 HUNT ENGINEERING HERON-API USER MANUAL

attach that SEM object to the FIFO handle. By using a call to the function SEM_pend, the
completion of the transfer can be detected when the semaphore is posted:

HeronFIFO *fifo;
extern far SEM_Obj sem0;

main_task() {

 int status;

 fifo = HeronSemOpenFifo(2, “r”, &sem0);

 status = HeronRead(fifo, buf, 1024);

 /* Wait for the transfer to complete */

 SEM_pend(&sem0);

 /* The transfer has completed */

}

Dedicated DMA
You can also reserve a DMA channel for exclusive use by a FIFO by using the ‘d’ option of
HeronSemOpenFifo. For example,
fifo = HeronSemOpenFifo(2, “rd”);

will open FIFO number 2 and will dedicate a DMA engine to it. If there are no DMA
engines available (because the user has claimed all of them, or too many other opens have
been made with this option) the HeronSemOpenFifo function will return NULL. The
dedicated option is provided for use in the case that you have a high bandwidth non-
blocking transfer that may lose data if a transfer is not ready to start when a FIFO flag
indicates data is available.

If the dedicated DMA is not used in this case and several transfers are using the DMAs the
delay while waiting for a DMA engine to become free may result in the loss of data. This
option does not necessarily provide more bandwidth but guarantees availability of a DMA
engine to perform the transfer.

You can open 12 FIFOs at most. (A HERON module has 6 FIFOs for input and 6 for
output.)

DMA/CPU Priority
Each of the DMA engines on the ’C6201 and ’C6701 can be programmed to have the CPU
have priority over the DMA, or to have the DMA have priority over the CPU.

Using the specifier ‘u’ you can set the CPU to have priority.

Specifier ‘m’ allows you to specify that DMA has priority (this is the default).

For example:
fifo = HeronSemOpenFifo(2, “ru”);

Assigns that CPU should have priority over the DMA for this FIFO.

Error Conditions
The global error variable heronerr is used to indicate which error condition has occurred
when a call to HeronSemOpenFifo is unsuccessful.

34 HUNT ENGINEERING HERON-API USER MANUAL

If the argument fifono is outside the expected range (0 to 5) the function call will return
NULL, and the global error variable heronerr will be set to the value defined by
HERON_INVALID_FIFO_NO. The values for heronerr are defined in the header file for
the HERON module type you are using.

If a NULL pointer is provided for the string argument s the function call will return NULL,
and the global error variable heronerr will be set to the value defined by
HERON_NULL_POINTER.

If a NULL pointer is provided for the SEM_Obj pointer argument sem the function call will
return NULL, and the global error variable heronerr will be set to the value defined by
HERON_NULL_POINTER.

If the function call fails due to a lack of resources, the global error variable heronerr will
be set to the value defined by HERON_NO_RESOURCE. This can occur if a call to
HeronSemOpenFifo is made when all DMA channels have either been claimed by a call
to HeronDmaClaim or when all DMA channels have been dedicated by previous calls to
HeronSemOpenFifo.

If an invalid character is contained in the string pointed to by the argument s, the global
error variable heronerr will be set to HERON_INVALID_CHARACTER. The valid
characters are ‘r’, ‘w’, ‘m’, ‘u’ and ‘d’.

If both ‘r’ and ‘w’ are specified in the string argument the global error variable heronerr
will be set to HERON_RW_NOT_SUPPORTED. It is incorrect to open a FIFO for both
reading and writing. The HERON-API will use one FIFO handle for a FIFO opened for
reading and another FIFO handle for a FIFO opened for writing. Therefore, for reading
and writing the same FIFO number, two calls should be made to HeronSemOpenFifo.
One call should be made with the ‘r’ option only and one call with the ‘w’ option only.

It is also an error to not specify either ‘r’ or ‘w’ as part of the string argument. Doing so will
cause the function call to fail with the global error variable heronerr set to
HERON_NO_IO_SPECIFIED.

If a call to HeronSemOpenFifo is made for a FIFO that has already being opened, then
the function call will fail, and the global error variable heronerr will be set
HERON_FIFO_OPEN.

35 HUNT ENGINEERING HERON-API USER MANUAL

HeronFIFO *HeronSioOpenFifo(int fifono, char *s, SIO_Obj *sio, Ptr
*pbuffer)
For opening a FIFO that is to use Streaming I/O (SIO), use the HeronSioOpenFifo
function.

Where fifono can be 0 through 5, and is the number of the HERON FIFO to open.

The argument s is a pointer to a string that can contain,

‘r’ - open for reading
‘w’ - open for writing

The argument sio is a pointer to a DSP/BIOS SIO object, created in the .cdb file you are
using. The SIO object pointed to by this argument must define the SIO stream that is to be
used along subsequent calls to the function HeronSioRead or HeronSioWrite.

The pointer to pointer argument pbuffer is used to return a pointer to an SIO buffer.
This SIO buffer that is returned should then be used by the first call to HeronSioRead or
HeronSioWrite.

A simple example is

HeronFIFO *fifo;
extern far SIO_Obj user_sio;
unsigned int *data;
fifo = HeronSioOpenFifo(2, “r”, &user_sio, (Ptr *)&data);
if (fifo == NULL)
{
 printf(“Cannot open fifo 2. Error %d\n”, heronerr);
 srv_exit(0); /* HUNT ENGINEERING Server/Loader exit */
}

This code snippet shows that FIFO number 2 is opened for reading with SIO. To open for
writing, you would use a specifier character ‘w’ rather than ‘r’. If the call to
HeronSioOpenFifo is successful, a FIFO handle is returned. The FIFO handle should
be used as a parameter for subsequent calls to the HERON-API functions HeronSioRead
or HeronSioWrite.

A NULL value will be returned if the call fails. In this case, the global error variable
heronerr will specify in more detail what problem was encountered.

Using SIO
When reading or writing from a FIFO that has been opened with the function
HeronOpenFifo, the functions HeronRead and HeronWrite are used to start the
transfer, and the functions HeronTestIo and HeronWaitIo are used to test or wait for
the completion of the FIFO transfer.

When reading or writing from a FIFO using SIO, the functions HeronSioRead and
HeronSioWrite are used. Unlike the HeronRead and HeronWrite functions, the SIO
functions are not asynchronous. That is, each time the SIO functions are called, the
function will not return until a buffer has been transferred.

However, rather than being used to directly transfer a buffer to or from a HERON FIFO,
the SIO functions are used to pass data between two queues managed by the HERON-API.
By using buffer queues, the transfer of data between the FIFOs and the user application is

36 HUNT ENGINEERING HERON-API USER MANUAL

further de-coupled in comparison to the asynchronous FIFO access functions.

The HERON-API is used to manage the transfer of data between the queues and the
FIFOs. It works by repeatedly transferring many buffers of the same size. As soon as one
buffer transfer is complete, the next is started.

This leaves the user application free to pass buffers to and from the other end of the two
buffer queues at its own rate.

For each FIFO opened to use SIO, two queues are created. One for buffers to be passed to
the HERON-API, and one for buffers passed from the HERON-API to the user
application.

If the FIFO is opened for reading, the first queue is used to pass empty buffers to the
HERON-API, and the second queue is used to receive full buffers from the HERON-API.

Conversely, if the FIFO is opened for writing, the first queue is used to pass full buffers to
the HERON-API, and the second queue is used to receive empty buffers back from the
HERON-API.

The argument sio is a pointer to a DSP/BIOS SIO object that has been created in the
.cdb file you are using.

When you create the SIO object in your .cdb file, you will need to edit the SIO object
properties to select the HERON-API SIO driver you wish to use. The template .cdb files
that are provided with the HERON-API include three User Defined Devices for this
purpose.

Device ‘Dx0’ is a driver for reading from a FIFO using a trash buffer, device ‘Dx1’ is a
driver for reading from a FIFO without using a trash buffer and device ‘Dx2’ is a driver for
writing to a FIFO. The x in the device name represents the HERON module type you are
using. For example, when using a HERON1 you would use devices ‘D10’, ‘D11’ and ‘D12’.

In addition to setting the device driver to be used by the SIO stream, you must also set the
buffer size (entered in bytes), and the number of buffers to use between the HERON-API
and the user application. You must also ensure that a tick is placed in the Allocate Static
Buffers check box.

You must include a reference to the SIO object in your source code so that a pointer to that
object can be passed to the function HeronSioOpenFifo.

The following code example shows how SIO can be used to read data from a FIFO. In this
example, repeated transfers are performed using many buffers of the same size. Once the
first transfer is started the HERON-API will continue to receive data in the background. As
each buffer is filled and passed back to the user application in the second queue, a new
transfer is automatically started in the background using a buffer from the first queue. For
each time round the loop, one new buffer of data is passed to the user process, and the
previous used buffer is returned to the SIO stream.

/* Declare a data pointer */
unsigned int *data;

/* Open FIFO 2 for reading using SIO */
handle = HeronSioOpenFifo(2, “r”, &sio_obj, (Ptr *)&data);

/* Check the HeronSioOpenFifo call was successful */
if (handle == NULL) exit(0);

37 HUNT ENGINEERING HERON-API USER MANUAL

/* Start the transfer and processing of data */
for (i=0;i<N;i++) {
 status = HeronSioRead(handle,(Ptr *)&data);

 /* Do some processing here on the data */
 /* pointed to by the pointer ‘data’ */
}

Error Conditions
The global error variable heronerr is used to indicate which error condition has occurred
when a call to HeronSioOpenFifo is unsuccessful.

If the argument fifono is outside the expected range (0 to 5) the function call will return
NULL, and the global error variable heronerr will be set to the value defined by
HERON_INVALID_FIFO_NO. The values for heronerr are defined in the header file for
the HERON module type you are using.

If a NULL pointer is provided for the string argument s the function call will return NULL,
and the global error variable heronerr will be set to the value defined by
HERON_NULL_POINTER.

If a NULL pointer is provided for the SIO_Obj pointer argument sio the function call will
return NULL, and the global error variable heronerr will be set to the value defined by
HERON_NULL_POINTER.

If the function call fails due to a lack of resources, the global error variable heronerr will
be set to the value defined by HERON_NO_RESOURCE. This can occur if a call to
HeronSioOpenFifo is made when all DMA channels have either been claimed by a call
to HeronDmaClaim or when all DMA channels have been dedicated by previous calls to
HeronSioOpenFifo.

If an invalid character is contained in the string pointed to by the argument s, the global
error variable heronerr will be set to HERON_INVALID_CHARACTER. The valid
characters are ‘r’ and ‘w’.

If both ‘r’ and ‘w’ are specified in the string argument the global error variable heronerr
will be set to HERON_RW_NOT_SUPPORTED. It is incorrect to open a FIFO for both
reading and writing. The HERON-API will use one FIFO handle for a FIFO opened for
reading and another FIFO handle for a FIFO opened for writing. Therefore, for reading
and writing the same FIFO number, two calls should be made to HeronSioOpenFifo.
One call should be made with the ‘r’ option only and one call with the ‘w’ option only.

It is also an error to not specify either ‘r’ or ‘w’ as part of the string argument. Doing so will
cause the function call to fail with the global error variable heronerr set to
HERON_NO_IO_SPECIFIED.

If a call to HeronSioOpenFifo is made for a FIFO that has already being opened, then
the function call will fail, and the global error variable heronerr will be set
HERON_FIFO_OPEN.

38 HUNT ENGINEERING HERON-API USER MANUAL

inline int HeronRead(HeronFIFO *handle, void *buffer, unsigned int size)
Each FIFO opened for reading can be read using the HeronRead function.

handle is the FIFO handle given by a call to the functions HeronOpenFifo,
HeronSwiOpenFifo or HeronSemOpenFifo.

The buffer pointed to by *buffer is where the data will be written to.

The argument size is the number of 32 bit dwords to read.

Using HeronRead starts a process that reads data from a FIFO and writes to a buffer. For
example:

status = HeronRead(fifo, buf, 1024);

The HeronRead function returns either HERON_IO_IN_PROGRESS or an error, but not
HERON_OK. This is because HeronRead only initiates a read but does no reading of FIFOs
itself. When a read is successfully submitted, it returns HERON_IO_IN_PROGRESS. Or
otherwise an error is reported.

int HeronRestartRead(HeronFIFO *handle, void *buffer)
The function HeronRestartRead is similar to the function HeronRead in that it can be
used to read data from a FIFO opened for reading. The function will read the same number
of elements as defined by the last call to HeronRead for the specified FIFO handle.

The function HeronRestartRead is intended for use in repeated loops where once an
initial HeronRead has been performed, successive reads are required that will transfer data
from a FIFO using the same transfer size.

The function HeronRestartRead must be used with care. The function will perform no
error checking on the parameters supplied, or on the state of the FIFO handle. It will start a
read using a transfer size given in the last call to HeronRead (for that handle), and will
always return HERON_IO_IN_PROGRESS once the read has been started.

handle is the FIFO handle given by the HeronOpenFifo, HeronSwiOpenFifo or
HeronSemOpenFifo functions. A call to HeronRead must have been made for the same
FIFO handle, and that read must have completed before this function can be safely called.

The buffer pointed to by *buffer is where the data will be written to. This buffer may be
a different buffer to the buffer specified in the previous call to HeronRead.

The following example illustrates how this function should be used in combination with the
function HeronRead.

/* Start the first read */
status = HeronRead(handle,buffer,size);
/* Check that the transfer was started successfully */
if (status != HERON_IO_IN_PROGRESS) exit(0);
/* Wait for transfer to complete */
status = HeronWaitIo(handle);
/* Check there were no problems */
if (status != HERON_OK) exit(0);

while (1) {
 /* Restart a new read to the same buffer */

39 HUNT ENGINEERING HERON-API USER MANUAL

 status = HeronRestartRead(handle,buffer);
 /* Wait for transfer to complete */
 status = HeronWaitIo(handle);
 /* Check there were no problems */
 if (status != HERON_OK) exit(0);
}

inline unsigned int HeronReadWord(HeronFIFO *handle, int *status)
The function HeronReadWord is provided as an optimised routine for reading a single
word from a FIFO, but must be used with care. By using HeronRead and HeronTestIo
or HeronWaitIo it is possible to safely read a single word at a time, but there is a large
software overhead for the amount of data being transferred.

By using HeronReadWord the software overhead of reading a single word with
HeronRead can be avoided.

The argument handle is the FIFO handle given by the HeronOpenFifo,
HeronSwiOpenFifo or HeronSemOpenFifo functions.

The function returns a single dword, which is read from the input FIFO specified through
the supplied handle. The function will not return until there is an available dword to be read
from the FIFO.

The pointer argument status is used to record a value to indicate success or failure.

For example:

data = HeronReadWord(fifo, &stat);

This function must be used carefully. By default the function performs no checking of the
validity of the arguments supplied in order to reduce software overheads. When using the
function you must be very careful that the handle specified is a valid handle and that there
are no outstanding I/Os on that handle. You must also ensure the pointer argument
status is valid and not NULL. Failure to ensure this will result in program failure.

By defining the text ‘HERON_INLINE_CHECKING’ as shown below,
#define HERON_INLINE_CHECKING

checking is enabled in the inline functions of the HERON-API. This define must appear
before the inclusion of the HERON-API header file ‘heronx.h’.

With this defined, the function HeronReadWord will check the arguments are valid, and
that it is valid to read from the specified handle. Any error condition encountered will result
in an error value being written to the integer variable pointed to by the argument status.
If data is successfully read status will be set to HERON_OK.

40 HUNT ENGINEERING HERON-API USER MANUAL

inline int HeronSioRead(HeronFIFO *handle, Ptr *pbuffer)

Each FIFO opened for reading with Streaming I/O (SIO) can be read using the
HeronSioRead function.

handle is the FIFO handle given by a call to the function HeronSioOpenFifo.

For each FIFO opened to use SIO, two queues are created. One queue is used to manage
empty buffers to be given to the SIO stream by the user process, and the other queue is
used to return full buffers to the user process.

The first call to HeronSioRead will start an SIO process that will repeatedly read many
buffers of the same size from a FIFO. This function should be used when reading from a
high speed FIFO connection, where it is necessary to continuously read buffers of the same
size.

The pointer-to-pointer argument pbuffer is used to exchange buffers between the user
process and the SIO stream. For each call to HeronSioRead, a pointer to a pointer to an
empty buffer must be supplied in the pbuffer argument. When the function returns, the
pbuffer argument will point to a pointer to a new data buffer. This new data buffer will
contain data that has been read from the FIFO and placed in the appropriate SIO queue.

An example of the use of HeronSioRead is given below:

/* Start the transfer and processing of data */
unsigned int *data;
for (i=0;i<N;i++) {
 status = HeronSioRead(handle,(Ptr *)&data);

 /* Do some processing here on the data */
 /* pointed to by the pointer ‘data’ */
}

If there is no error, the function HeronSioRead will block until there is a full buffer to
return.

When the function returns, it will return either HERON_OK or an error.

The SIO FIFO Read Trash Buffer
The template .cdb files provided with the HERON-API include two SIO FIFO read
drivers. One of these two drivers should be selected when configuring the SIO object used
with the functions HeronSioOpenFifo and HeronSioRead.

The drivers are located in the User Defined Devices section of the .cdb file.

The first driver, ‘Dx0’ uses a trash buffer, and the second driver ‘Dx1’ does not, where the
‘x’ in the driver name represents the HERON module type you are using.

The HERON-API continuously reads buffers when using SIO. If the queue of empty
buffers is empty when the next transfer must be started, the trash buffer driver will continue
to read data and will discard the data into a ‘trash’ buffer. The size of the trash buffer is set
to be the same as the size of the data buffers. Therefore, whenever data is written to the
trash buffer, the SIO stream will lose an exact buffer of data.

Using the first driver may mean that data is lost, but it is always lost in known amounts.

The second driver (which does not use a trash buffer) will instead pause the reading of the

41 HUNT ENGINEERING HERON-API USER MANUAL

FIFO until another empty buffer is supplied to the SIO stream. With this driver, data is
never discarded into the trash buffer, but the performance provided by this driver is less
than that of the first FIFO read driver.

The Trash Count
When using the FIFO Read With Trash Buffer driver, the function SIO_ctrl can be used on
the associated SIO stream to obtain the ‘trash-count’.

The ‘trash-count’ is a count of how many times the trash buffer was used by the SIO driver.
Each time the SIO_ctrl function is used to get the trash-count, the count is reset to 0.

The trash-count is a count of whole buffers, where the buffer length matches that set in the
properties of the associated SIO object.

The following code shows how to use the SIO_ctrl function to obtain the trash-count.

Unsigned int *data;
Unsigned int trash_count;
Int status;

/* Process N buffers */
for (i=0;i<N;i++) {
 HeronSioRead(handle,(Ptr *)&data);

 /* Process the buffer here */
}

/* Use the SIO_ctrl function to find out how many */
/* times the trash buffer was used. The second */
/* argument must be set to 0 for the SIO_ctrl */
/* call to return the count of how many times */
/* the trash buffer was used. */
status = SIO_ctrl(&sio_obj,0,(Arg)&trash_count);
printf("The trash buffer was used %d times\n",trash_count);

int HeronSioReadAlign(HeronFIFO *handle, int n, Ptr *pbuffer)

A FIFO opened for reading with Streaming I/O (SIO) can be aligned with the function
HeronSioReadAlign, where handle is the FIFO handle given by a call to the function
HeronSioOpenFifo.

When reading using SIO, the HERON-API will continuously transfer data using buffers of
the same size. This buffer size is set when the SIO object is defined in the configuration
database file (.cdb file).

When reading from a high speed I/O module such as an A/D module, the buffer size will
typically be set to a multiple of the number of A/D channels in use. In this way, each buffer
returned through HeronSioRead will have the first channel in the same place in the buffer.

Where the first channel is not located in the first element of each SIO buffer,
HeronSioReadAlign can be used to adjust the position of the first channel in the data.

The SIO data is adjusted by reading a smaller amount of data into the next SIO buffer. The

42 HUNT ENGINEERING HERON-API USER MANUAL

number of words by which the next buffer size is reduced is specified through the integer
argument n.

The pointer-to-pointer argument pbuffer is used to exchange buffers between the user
process and the SIO stream in a similar way to that of HeronSioRead. For each call to
HeronSioReadAlign, a pointer to a pointer to an empty buffer must be supplied in the
pbuffer argument, and when the function returns, the pbuffer argument will point to a
pointer to a new data buffer.

The new data buffer that is returned will contain data that has been aligned based on the
word adjustment value, n.

When the function returns, it will return either HERON_OK or an error.

An example of the use of HeronSioReadAlign is given below. This example assumes
that data is being read from an A/D module that has 4 channels. For each channel, one
sample is output in a 32-bit word, with two bits of channel identification in bits 0 and 1.
The example will use HeronSioReadAlign to align channel 0 into word 0 of each SIO
buffer.

int n;

unsigned int *data;

HeronSioRead(handle,(Ptr *)&data);

/* Find channel 0 in the data to calculate the shift value */

if ((data[0] & 0x03) == 0) n = 0;

else if ((data[1] & 0x03) == 0) n = 3;

else if ((data[2] & 0x03) == 0) n = 2;

else if ((data[3] & 0x03) == 0) n = 1;

/* Re-align the SIO stream */

HeronSioReadAlign(handle,n,(Ptr *)&data);

43 HUNT ENGINEERING HERON-API USER MANUAL

inline int HeronWrite(HeronFIFO *handle, void *buffer, unsigned int size)
Each FIFO opened for write can be written using the HeronWrite function.

handle is the FIFO handle given by a call to the functions HeronOpenFifo,
HeronSwiOpenFifo or HeronSemOpenFifo.

The buffer pointed to by *buffer is where the data will be read from.

The argument size is the number of 32 bit dwords to written.

Using HeronWrite starts a process that reads a buffer and writes the data to a FIFO. For
example:

status = HeronWrite(fifo, buf, 1024);

The HeronWrite function returns either HERON_IO_IN_PROGRESS or an error, but not
HERON_OK. This is because HeronWrite only initiates a write but does no writing of
FIFOs itself. When a write is successfully submitted, it returns HERON_IO_IN_PROGRESS.
Otherwise an error is reported.

int HeronRestartWrite(HeronFIFO *handle, void *buffer)
The function HeronRestartWrite is similar to the function HeronWrite in that it can
be used to write to a FIFO opened for writing. The function will write the same number of
elements as defined by the last call to HeronWrite for the specified FIFO handle.

The function HeronRestartWrite is intended for use in repeated loops where once an
initial HeronWrite has been performed, successive writes are required that will transfer
data to a FIFO using the same transfer size.

The function HeronRestartWrite must be used with care. The function will perform no
error checking on the parameters supplied, or on the state of the FIFO handle. It will start a
write using a transfer size given in the last call to HeronWrite (for that handle), and will
always return HERON_IO_IN_PROGRESS once the write has been started.

handle is the FIFO handle given by the HeronOpenFifo, HeronSwiOpenFifo or
HeronSemOpenFifo functions. A call to HeronWrite must have been made for the
same FIFO handle, and that write must have completed before this function can be safely
called.

The buffer pointed to by *buffer is where the data will be read from. This buffer may be
a different buffer to the buffer specified in the previous call to HeronWrite.

The following example illustrates how this function should be used in combination with the
function HeronWrite.

/* Start the first write */
status = HeronWrite(handle,buffer,size);
/* Check that the transfer was started successfully */
if (status != HERON_IO_IN_PROGRESS) exit(0);
/* Wait for transfer to complete */
status = HeronWaitIo(handle);
/* Check there were no problems */
if (status != HERON_OK) exit(0);

while (1) {

44 HUNT ENGINEERING HERON-API USER MANUAL

 /* Restart a new write from the same buffer */
 status = HeronRestartWrite(handle,buffer);
 /* Wait for transfer to complete */
 status = HeronWaitIo(handle);
 /* Check there were no problems */
 if (status != HERON_OK) exit(0);
}

inline int HeronWriteWord(HeronFIFO *handle, unsigned int data)
The function HeronWriteWord is provided as an optimised routine for writing a single
word to a FIFO, but must be used with care. By using HeronWrite and HeronTestIo
or HeronWaitIo it is possible to safely write a single word at a time, but there is a large
software overhead for the amount of data being transferred.

By using HeronWriteWord the software overhead of writing a single word with
HeronWrite can be avoided.

The argument handle is the FIFO handle given by the HeronOpenFifo,
HeronSwiOpenFifo or HeronSemOpenFifo functions.

The function writes a single dword to the output FIFO specified through the supplied
handle. The function will not return until the write has completed.

For example:

stat = HeronWriteWord(fifo, data);

This function must be used carefully. By default the function performs no checking of the
validity of the arguments supplied in order to reduce software overheads. When using the
function you must be very careful that the handle specified is a valid handle and that there
are no outstanding I/Os on that handle. Failure to ensure this will result in program failure.

By defining the text ‘HERON_INLINE_CHECKING’ as shown below,
#define HERON_INLINE_CHECKING

checking is enabled in the inline functions of the HERON-API. This define must appear
before the inclusion of the HERON-API header file ‘heronx.h’.

With this defined, the function HeronWriteWord will check the arguments are valid, and
that it is valid to write with the specified handle. Any error condition encountered will result
in an error value returned. If data is successfully written the function will return
HERON_OK.

45 HUNT ENGINEERING HERON-API USER MANUAL

inline int HeronSioWrite(HeronFIFO *handle, Ptr *pbuffer)

Each FIFO opened for writing with Streaming I/O (SIO) can be written using the
HeronSioWrite function.

handle is the FIFO handle given by a call to the function HeronSioOpenFifo.

For each FIFO opened to use SIO, two queues are created. One queue is used to manage
full buffers to be output to the SIO stream from the user process, and the other queue is
used to return empty buffers to the user process.

The first call to HeronSioWrite will start an SIO process that will repeatedly write many
buffers of the same size to a FIFO. This function should be used when writing to a FIFO at
a fast rate, and where it is necessary to continuously output buffers of the same size.

The pointer-to-pointer argument pbuffer is used to exchange buffers between the user
process and the SIO stream. For each call to HeronSioWrite, a pointer to a pointer to an
full buffer must be supplied in the pbuffer argument. When the function returns, the
pbuffer argument will point to a pointer to an empty data buffer. This empty data buffer
can then be used to construct the next buffer to be output.

An example of the use of HeronSioWrite is given below:

/* Start the transfer and processing of data */
unsigned int *data;
for (i=0;i<N;i++) {
 /* Do some processing here to */
 /* create an output buffer */

 /* Exchange buffer pointers */
 status = HeronSioWrite(handle,(Ptr *)&data);
}

If there is no error, the function HeronSioWrite will block until there is an empty buffer
to return.

When the function returns, it will return either HERON_OK or an error.

The template .cdb files provided with the HERON-API include one SIO FIFO write
driver. This driver must be selected when configuring the SIO object used with the
functions HeronSioOpenFifo and HeronSioWrite.

The driver is located in the User Defined Devices section of the .cdb file and is named,
‘Dx2’ where the ‘x’ in the driver name represents the HERON module type you are using.

For example, when using a HERON1, the FIFO write driver would be named ‘D12’.

46 HUNT ENGINEERING HERON-API USER MANUAL

int HeronTestIo(HeronFIFO *handle)
You can use the function HeronTestIo to check the status of an I/O.

The argument handle is the FIFO handle returned by the HeronOpenFifo function.

Typically we will want the DSP to do some work, rather than idly wait for the I/O to
complete. In such cases, use the non-blocking HeronTestIo.

For example:

status = HeronRead(fifo, buf, 1024);
while (HeronTestIo(fifo) == HERON_IO_IN_PROGRESS)
{
 /* do useful work */
}
if (status != HERON_OK)
{
 printf(“Cannot read fifo 2. Error %d\n”, heronerr)
 srv_exit(0);/* HUNT ENGINEERING Server/Loader exit */
}

The function HeronTestIo only checks if the read (or write) has completed or not, then
returns. The return value is either HERON_OK if the read (or write) has completed, or
HERON_IO_IN_PROGRESS if the I/O hasn’t completed yet. If an invalid FIFO handle is
supplied through the argument handle, the function will return
HERON_INVALID_HANDLE.

int HeronWaitIo(HeronFIFO *handle)
You can use the function HeronWaitIo to block until an I/O is complete.

The argument handle is the FIFO handle given by the HeronOpenFifo function.

The function is a blocking wait, and is used in the following example:

status = HeronRead(fifo, buf, 1024);
if (status == HERON_IO_IN_PROGRESS)
{
 status = HeronWaitIo(fifo);
}
if (status != HERON_OK)
{
 printf(“Cannot read fifo 2. Error %d\n”, heronerr)
 srv_exit(0); /* HUNT ENGINEERING Server/Loader exit */
}

As you can see, we call HeronWaitIo only after successfully initiating a read (or write)
request. The function will wait until the read (or write) has finished. The function
HeronWaitIo will return HERON_OK or it will report an error, but will never return
HERON_IO_IN_PROGRESS.

The function HeronWaitIo will return HERON_INVALID_HANDLE if an invalid FIFO
handle is passed through the argument handle.

47 HUNT ENGINEERING HERON-API USER MANUAL

int HeronClose(HeronFIFO *handle)
The function HeronClose will close a previously opened FIFO.

The argument handle is the FIFO handle returned by the HeronOpenFifo,
HeronSwiOpenFifo, or HeronSemOpenFifo functions.

For a FIFO handle previously opened with HeronSioOpenFifo, use the function
HeronSioClose.

This function releases resources such as DMA channels that can now be used by other parts
of a program. For example:
HeronClose(fifo);

If there is an outstanding I/O on this FIFO, the close will fail and return an error. In this
case see HeronCancelIo.

The function HeronClose will return HERON_INVALID_HANDLE if an invalid FIFO
handle is passed through the argument handle. If an attempt is made to close a FIFO
which still has an outstanding I/O, the function will return HERON_HANDLE_ACTIVE.

int HeronSioClose(HeronFIFO *handle)
The function HeronSioClose will close a previously opened Streaming I/O FIFO.

The argument handle is the FIFO handle returned by HeronSioOpenFifo function.

This function releases resources such as DMA channels that can now be used by other parts
of a program. For example:
HeronSioClose(fifo);

The function HeronSioClose will return HERON_INVALID_HANDLE if an invalid FIFO
handle is passed through the argument handle.

int HeronCancelIo(HeronFIFO *handle)
The function HeronCancelIo will cancel all I/Os outstanding on a FIFO.

The argument handle is the FIFO handle returned by the HeronOpenFifo,
HeronSwiOpenFifo, HeronSemOpenFifo or HeronSioOpenFifo functions.

This function cancels all I/Os as required by an error handler closing FIFOs after a failure
has occurred. For example:

HeronCancelIo(fifo);

The function HeronCancelIo will return HERON_INVALID_HANDLE if an invalid FIFO
handle is passed through the argument handle. Otherwise, after the outstanding I/O has
been cancelled the function will return HERON_OK.

48 HUNT ENGINEERING HERON-API USER MANUAL

int HeronCancelWithFlush(HeronFIFO *handle, unsigned int *done)
The function HeronCancelWithFlush will cancel all I/Os outstanding on a FIFO. For
a handle opened for reading, the function will also attempt to flush data that is still available
for reading from the input FIFO.

In the case of a read, any data successfully flushed from the FIFO is written to the buffer
specified by the previous call to HeronRead. If the function successfully flushes enough
data to complete the previously started read, any remaining data flushed from the FIFO is
discarded.

In the case of a write, this function has the same effect as HeronCancelIo.

The argument handle is the FIFO handle returned by the HeronOpenFifo,
HeronSwiOpenFifo, HeronSemOpenFifo or HeronSioOpenFifo functions.

The argument done is a pointer to a variable of type unsigned int that will be used to
store the number of dwords successfully read with respect to the previous call to
HeronRead. This number equals the number of dwords read up until the point of the call
to this function, plus the dwords flushed by this function into the specified buffer.

This function cancels all I/Os as required by an error handler closing FIFOs after a failure
has occurred. For example:

HeronCancelWithFlush(fifo);

The function HeronCancelWithFlush will return HERON_INVALID_HANDLE if an
invalid FIFO handle is passed through the argument handle. The function will return
HERON_NULL_POINTER if the pointer argument done is invalid (NULL).

If the function is attempting to flush the FIFO and there is still data being written to the
other side of the FIFO, the function will return HERON_TOO_MUCH_TO_FLUSH, indicating
that the FIFO could not be successfully flushed. This is detected by the FIFO not
becoming empty after reading 80 words, which should always be more data than could be
stored in the FIFO.

Otherwise, after the outstanding I/O has been cancelled and the FIFO flushed the function
will return HERON_OK.

49 HUNT ENGINEERING HERON-API USER MANUAL

User DMA Management Functions

int HeronDmaClaim()
The HERON-API FIFO Access functions use all available DMA channels as default. The
DMA channels form resources to the functions HeronRead and HeronWrite. When the
user needs to directly program a DMA using one of the DMA channels the function
HeronDmaClaim must be called to allocate a DMA channel to the user and avoid any
conflict with the HERON-API.

The function HeronDmaClaim will attempt to allocate the highest DMA channel that is
not in use by the HERON_API at the time of the call.

Each time the function is called another DMA channel will be allocated. This function is
able to allocate all DMA channels. If the first call to the function HeronOpenFifo,
HeronSwiOpenFifo, HeronSemOpenFifo or HeronSioOpenFifo is after all DMA
channels have been claimed, the call to either function will fail as there are no available
resources left. Therefore when calling this function you must consider whether any DMA
resources will be required for using the HERON-API FIFO Access functions and limit the
calls to HeronDmaClaim accordingly.

If the call is unsuccessful the function will return –1. If the call is successful the function
will return the number of the DMA channel that has been allocated.

int HeronDmaFree(int dma)
The function HeronDmaFree returns control to the HERON-API, of a DMA channel
that was allocated by HeronDmaClaim.

The argument dma must specify the number of the DMA channel that was allocated by a
previous call to HeronDmaClaim.

If the DMA channel number passed to the function is invalid, the function will return
HERON_INVALID_DMA_NO.

If the DMA channel number passed to the function is a valid DMA number, but does not
match a previously claimed DMA channel, then the function will return
HERON_FREE_UNCLAIMED_DMA.

If the call was successful the function returns HERON_OK.

50 HUNT ENGINEERING HERON-API USER MANUAL

int HeronInstallIsr(unsigned int isr, int int_num)
The function HeronInstallIsr should be used to add an interrupt function to a DMA
complete interrupt that is associated with a DMA that was claimed with HeronDmaClaim.

Alternatively, this function should be used when you must add an interrupt service routine
dynamically during program execution, rather than statically through the DSP/BIOS
Configuration Database file (the .cdb file).

In all other cases, an interrupt should be installed by setting up an appropriate ISR in the
DSP/BIOS .cdb file.

The argument isr is the address of the interrupt service routine to be installed. The
argument int_num is a number between 0 and 15 specifying the interrupt number of the
ISR to be installed.

The function HeronInstallIsr will not allow an interrupt service routine to be installed
on an invalid interrupt number or on any of the external interrupts (EXT_INT0..3), as these
interrupts must only be used internally by the HERON-API. As such, the function will
return the error HERON_INVALID_INTERRUPT if the argument int_num is less than 0,
greater than 15, or set to a number between 4 and 7 inclusive.

The function will also not allow an interrupt service routine to be installed on the
DMA_INTx interrupts, unless the interrupt is associated to a DMA channel that has
already been claimed from the HERON-API by a call to HeronDmaClaim.

When installing an interrupt service routine, the function checks the address of the ISR to
be installed. If the address is in internal program memory space, the function
HeronInstallIsr must use a DMA channel to install the ISR. As such, the function
automatically shares one of the DMA channels being used by the HERON-API.

The function returns HERON_OK if the interrupt function is successfully installed.

The following code illustrates how this function would be used to install an interrupt service
routine for a DMA channel that has been claimed with HeronDmaClaim.

interrupt dma_isr()
{
/* place your ISR code here */
}

main()
{
int dma,int_num;

 if ((dma = HeronDmaClaim()) == -1) {
 printf(“Error: call to HeronDmaClaim failed\n”);
 exit(0);
 }

51 HUNT ENGINEERING HERON-API USER MANUAL

 switch (dma) {
 case 0: int_num = 8;
 break;
 case 1: int_num = 9;
 break;
 case 2: int_num = 11;
 break;
 case 3: int_num = 12;
 }
 HeronInstallIsr((unsigned int)dma_isr, int_num);
}

52 HUNT ENGINEERING HERON-API USER MANUAL

HERON Serial Bus Functions

HeronHSB *HeronHsbOpen()
The function HeronHsbOpen will open the HSB device for sending and receiving
messages. If the call to HeronHsbOpen is successful a HSB handle is returned. This handle
should be used as a parameter for subsequent calls to HSB message sending and receiving
functions.

If an attempt is made to open an already open HSB device, the function will fail by
returning a NULL pointer and setting the global error variable heronerr to
HERON_HSB_OPEN.

int HeronHsbClose(HeronHSB *handle)
The function HeronHsbClose closes a previously opened HSB device.

The argument handle is the HSB device handle returned by the function
HeronHsbOpen.

If the function successfully closes the opened HSB device, the function will return
HERON_OK. The function HeronHsbClose will return HERON_HSB_NOT_OPEN if an
attempt is made to close a HSB device that has not been opened.

int HeronHsbSendMessage(HeronHSB *handle, int msg_type, int board,
int slot, unsigned char *buffer, unsigned int size)
The function HeronHsbSendMessage sends a HSB message to the HSB device identified
by the board and slot function arguments.

The function operates on the HSB device specified through the argument handle. This
device handle is the handle returned by the function HeronHsbOpen.

The argument msg_type identifies the message type to be used in the send message
protocol. The message type is an integer number between 0 and 255.

The integer arguments board and slot identify the destination for the message. The
board argument is an integer between 0 and 15 that specifies the board number on which
the destination HSB device is located. The slot argument is an integer between 0 and 7
that specifies the slot in which the destination HSB device is located.

The buffer argument is a pointer to an array of unsigned chars. This array must contain
the optional data bytes to be transmitted in the message. The argument size defines the
number of data bytes to be transmitted. This number must not exceed the buffer size.

If no optional data bytes are to be sent in the message, the argument buffer must be set
to NULL, and the argument size must be set to 0.

The function HeronHsbSendMessage automatically generates the first three transmission
bytes. The first byte transmitted is the address byte. The address byte is generated from the
board and slot function arguments. The second byte transmitted is the message type.
The third byte transmitted is the address of this HSB device, that is, the address of the
transmitting end of the message transfer.

If any optional data bytes have been specified these are transmitted next. When all bytes
have been successfully transmitted the function will return HERON_OK.

53 HUNT ENGINEERING HERON-API USER MANUAL

If an invalid HSB device handle is passed into HeronHsbSendMessage, the function will
return HERON_INVALID_HANDLE.

If a non-zero optional data byte size is specified and a NULL pointer is supplied for the
argument buffer, the function will return HERON_NULL_POINTER.

For each message transmitted the receiving end must acknowledge the address byte if the
address matches its own address setting. If there is no response to the address byte the
function will end transmission and will return HERON_HSB_NO_RESPONSE. This condition
may occur if the destination device was incorrectly specified through the arguments board
and slot, or if the destination device was unable to receive a message.

If transmission of any one of the optional data bytes is not completed successfully, the
function will end transmission and return HERON_HSB_DATA_NOT_SENT.

int HeronHsbSendMessageEx(HeronHSB *handle, int msg_type, int board,
int slot, unsigned char *buffer, unsigned int size, int retries)
The function HeronHsbSendMessageEx is identical to HeronHsbSendMessage, but
upon error HERON_HSB_NO_RESPONSE, HeronHsbSendMessageEx will try to
send the message again. In effect, what HeronHsbSendMessageEx does is:
try = 0; status = HERON_HSB_NO_RESPONSE;
while (try<retries) {
 if (status!=HERON_HSB_NO_RESPONSE) status=HeronHsbSendMessage(…);
}

Why would you want to resend a message? When you have a system with EM2 inter-board
connectors, it can happen that on one board HSB is ready, but on another board HSB is
still busy. If on the board an HSB message is started, targeting a device on the not-yet-ready
other board, the HSB message may fail with HERON_HSB_NO_RESPONSE. The busy
state usually lasts only shortly, and simply retrying to send the message will work. This
function allows to automatically retrying sending the message.

Note that if retries is 0, the function will retry to send the message indefinitely. For
function parameters other than retries, please refer to HeronHsbSendMessage.

int HeronHsbReceiveMessage(HeronHSB *handle, int *msg_type, int
board, int slot, unsigned char *buffer, unsigned int size, unsigned int
*count)
The function HeronHsbReceiveMessage receives a HSB message from the HSB device
identified by the board and slot function arguments.

The function operates on the HSB device specified through the argument handle. This
device handle is the handle returned by the function HeronHsbOpen.

The pointer argument msg_type must point to an integer variable into which the message
type should be written.

The integer arguments board and slot identify the expected source of the message. The
board argument is an integer between 0 and 15 that specifies the board number on which
the source HSB device is located. The slot argument is an integer between 0 and 7 that
specifies the slot in which the source HSB device is located.

The buffer argument is a pointer to an array of unsigned chars. This array will be used to
store any optional data bytes that are received in the message. The argument size must

54 HUNT ENGINEERING HERON-API USER MANUAL

define the size of the data buffer.

The pointer argument count must point to an integer variable that will be used to record
the number of optional data bytes received. If no optional data bytes are received, the
integer pointed to by count will be set to 0.

The function will never store more bytes than is possible given the size of the data
buffer. If the number of bytes received exceeds the size of the data buffer, the remaining
bytes are discarded and the count will be set to the value specified by the argument size.

When all bytes have been successfully received the function will return HERON_OK.

If an invalid HSB device handle is passed into HeronHsbReceiveMessage, the function
will return HERON_INVALID_HANDLE.

If a non-zero buffer size is specified and a NULL pointer is supplied for the argument
buffer, the function will return HERON_NULL_POINTER. Also, if a NULL pointer is
supplied for the argument count, the function will return HERON_NULL_POINTER.

If a message is received, but the source address contained in the message does not match
the expected source specified through the board and slot arguments, the function will
return HERON_HSB_WRONG_SOURCE.

int HeronHsbStartSendMessage(HeronHSB *handle, int board, int slot)
The process of sending a message is made up of three parts. The first part involves setting
up the address byte and generating the start condition on the serial bus. The second part is
the transmission of all the data bytes, and the third part is ending the message and returning
the bus to a free state.

The function HeronHsbStartSendMessage will perform the first part of message
transmission. As such, this function must be used in combination with the functions
HeronHsbSendMessageData and HeronHsbEndOfSendMessage.

Please note where possible, the user should use the function HeronHsbSendMessage when
sending a message over HSB. The function HeronHsbStartSendMessage should only
be used where it is not possible to use the standard send message function.

This function operates on the HSB device specified through the argument handle. This
device handle is the handle returned by the function HeronHsbOpen.

The integer arguments board and slot identify the destination for the message. The
board argument is an integer between 0 and 15 that specifies the board number on which
the destination HSB device is located. The slot argument is an integer between 0 and 7
that specifies the slot in which the destination HSB device is located.

The function will generate the address byte from the board and slot arguments. The
address byte is the first byte transmitted in each message.

If the message is successfully started the function will return HERON_OK. The user must
then make further calls to the functions HeronHsbSendMessageData and
HeronHsbEndOfSendMessage.

If an invalid HSB device handle is passed into HeronHsbStartSendMessage, the
function will return HERON_INVALID_HANDLE.

If no response is received when the address byte is transmitted the function will return
HERON_HSB_NO_RESPONSE.

55 HUNT ENGINEERING HERON-API USER MANUAL

int HeronHsbSendMessageData(HeronHSB *handle, unsigned char
*buffer, unsigned int size)
The process of sending a message is made up of three parts. The first part involves setting
up the address byte and generating the start condition on the serial bus. The second part is
the transmission of all the data bytes, and the third part is ending the message and returning
the bus to a free state.

The function HeronHsbSendMessageData will perform the second part of message
transmission. As such, this function must be used in combination with the functions
HeronHsbStartSendMessage and HeronHsbEndOfSendMessage.

Please note where possible, the user should use the function HeronHsbSendMessage when
sending a message over HSB. The function HeronHsbSendMessageData should only be
used where it is not possible to use the standard send message function.

This function operates on the HSB device specified through the argument handle. This
device handle is the handle returned by the function HeronHsbOpen.

The buffer argument is a pointer to an array of unsigned chars. This array must contain
the data bytes to be transmitted. The argument size defines the number of data bytes to
be transmitted. This number must not exceed the buffer size.

When using this function to send a message, it must be called after successfully starting a
message through the function HeronHsbStartSendMessage. Once the message has
been started this function can be called repeatedly until all message data has been
transferred.

For the first call to this function after starting the message, the first two data bytes supplied
must be the message type byte and the reply (or source) address. The message type byte is
an integer number between 0 and 255. For a further description of the message type please
read the earlier section on ‘The Message Type’ in the chapter on ‘HERON Serial Bus
Functions’.

The reply address is generated by combining the board ID and slot number for the module
on which the HSB send message is being run. The bottom three bits of the address byte
must be set to the slot ID (between 0 and 7) and the next four bits of the address must be
set to the board ID (between 0 and 15). The following code excerpt shows how the address
would be generated for slot 2 of board 0:

 board = 0; slot = 2;
 address = slot;

 address = address | (board << 3);

After sending the message type and source address, all remaining data bytes are optional
data bytes.

For each call to HeronHsbSendMessageData the function will return HERON_OK when
it has successfully transmitted the number of data bytes given by the argument size.

If an invalid HSB device handle is passed into HeronHsbSendMessageData, the
function will return HERON_INVALID_HANDLE.

If a NULL pointer is supplied through the argument buffer the function will return
HERON_NULL_POINTER, and if the argument size is set to zero, the function will return
HERON_HSB_ZERO_BYTE_COUNT.

56 HUNT ENGINEERING HERON-API USER MANUAL

If the function is unable to send all of the specified data bytes, the function will return
HERON_HSB_DATA_NOT_SENT.

Note that if you send HSB messages across EM2 inter-board connectors to another board,
it may happen that error HERON_HSB_NO_RESPONSE is returned. This is not necessarily a
fault. If two HSB messages are sent in quick succession, the HSB on the other board may
still be busy when you start the next message. The HSB that is busy will cause the function
to return error message HERON_HSB_NO_RESPONSE. In such situations, resend the whole
message again (that is, start again with HeronHsbStartSendMessage and then execute
again HeronHsbSendMessageData). You may have to retry a few times, but I find that
with two boards (connected via EMs) one retry is usually enough.

int HeronHsbEndOfSendMessage(HeronHSB *handle)
The process of sending a message is made up of three parts. The first part involves setting
up the address byte and generating the start condition on the serial bus. The second part is
the transmission of all the data bytes, and the third part is ending the message and returning
the bus to a free state.

The function HeronHsbEndOfSendMessage will perform the third part of message
transmission. As such, this function must be used in combination with the functions
HeronHsbStartSendMessage and HeronHsbSendMessageData.

Please note where possible, the user should use the function HeronHsbSendMessage when
sending a message over HSB. The function HeronHsbEndOfSendMessage should only
be used where it is not possible to use the standard send message function.

This function operates on the HSB device specified through the argument handle. This
device handle is the handle returned by the function HeronHsbOpen.

This function must be called to end the transmission of a HSB message after successfully
starting the message through a call to HeronHsbStartSendMessage, and after one or
more successful calls to the function HeronHsbSendMessageData.

If an invalid HSB device handle is passed into HeronHsbEndOfSendMessage, the
function will return HERON_INVALID_HANDLE, else the function will end the message,
return the serial bus to a free state and return HERON_OK.

int HeronHsbStartReceiveMessage(HeronHSB *handle, unsigned char *id)
The process of receiving a message is made up of three parts. The first part involves waiting
to be addressed by the transmitting end. The second part is the reception of the data bytes,
and the third part is ending the message and waiting for the bus to return to a free state.

The function HeronHsbStartReceiveMessage will perform the first part of message
reception. As such, this function must be used in combination with the functions
HeronHsbReceiveMessageData and HeronHsbEndOfReceiveMessage.

Please note where possible, the user should use the function HeronHsbReceiveMessage
when receiving a message over HSB. The function HeronHsbStartReceiveMessage
should only be used where it is not possible to use the standard receive message function.

This function operates on the HSB device specified through the argument handle. This
device handle is the handle returned by the function HeronHsbOpen.

The unsigned char variable pointed to by the argument id is used to store the address of

57 HUNT ENGINEERING HERON-API USER MANUAL

the message that is being received. For the message to be correct, this address ID must
match the expected address of the receiving module. The address value can be generated by
combining the board ID and slot number, for the module on which the HSB receive
message is being run.

The bottom three bits of the address byte must equal the slot ID (between 0 and 7) and the
next four bits of the address must equal the board ID (between 0 and 15). The following
code excerpt shows how the address would be generated for slot 2 of board 0:

 board = 0; slot = 2;
 address = slot;
 address = address | (board << 3);

If the start of the message is successfully detected the function will return HERON_OK. The
user must then make further calls to the functions HeronHsbReceiveMessageData and
HeronHsbEndOfReceiveMessage.

If an invalid HSB device handle is passed into HeronHsbStartReceiveMessage, the
function will return HERON_INVALID_HANDLE.

If a NULL pointer is supplied through the pointer argument id the function will return
HERON_NULL_POINTER.

int HeronHsbReceiveMessageData(HeronHSB *handle, unsigned char
*buffer, unsigned int size, unsigned int *count)
The process of receiving a message is made up of three parts. The first part involves waiting
to be addressed by the transmitting end. The second part is the reception of the data bytes,
and the third part is ending the message and waiting for the bus to return to a free state.

The function HeronHsbReceiveMessageData will perform the second part of message
reception. As such, this function must be used in combination with the functions
HeronHsbStartReceiveMessage and HeronHsbEndOfReceiveMessage.

Please note where possible, the user should use the function HeronHsbReceiveMessage
when receiving a message over HSB. The function HeronHsbReceiveMessageData
should only be used where it is not possible to use the standard receive message function.

This function operates on the HSB device specified through the argument handle. This
device handle is the handle returned by the function HeronHsbOpen.

The buffer argument is a pointer to an array of unsigned chars. This array will be used to
store data bytes that are received in the message. The argument size must define the size
of the data buffer.

The pointer argument count must point to an integer variable that will be used to record
the number of data bytes received. If no data bytes are received, the integer pointed to by
count will be set to 0.

The function will never store more bytes than is possible given the size of the data
buffer. If the number of bytes received equals the size of the data buffer, the function will
return. If there are any more data bytes to be received, these will be received by calling the
function again, or alternatively will be discarded if the next function that is called is
HeronEndOfReceiveMessage.

When using this function to receive a message, it must be called after successfully detecting

58 HUNT ENGINEERING HERON-API USER MANUAL

an incoming message through the function HeronHsbStartReceiveMessage. Once
the message has been detected this function can be called repeatedly until all message data
has been transferred.

For the first call to this function after starting the message, the first two data bytes received
will be the message type byte and the reply (or source) address. The message type byte is an
integer number between 0 and 255. For a further description of the message type please
read the earlier section on ‘The Message Type’ in the chapter on ‘HERON Serial Bus
Functions’.

The reply address can be used to form a new destination address if a message must be
returned to the sender. After receiving the message type and source address, all
remaining data bytes are optional data bytes.

For each call to HeronHsbReceiveMessageData the function will return HERON_OK
when it has successfully received a number of data bytes.

The number of data bytes received will be between 0 and the number given by the
argument size. When a call to this function returns less bytes than the size argument this
indicates that there is no more data to be received for this message. In this case reception of
the message must be terminated by a call to HeronHsbEndOfReceiveMessage.

If an invalid HSB device handle is passed into HeronHsbReceiveMessageData, the
function will return HERON_INVALID_HANDLE.

If a NULL pointer is supplied through the argument buffer the function will return
HERON_NULL_POINTER, and if the argument size is set to zero, the function will return
HERON_HSB_ZERO_BYTE_COUNT.

If a NULL pointer is supplied through the pointer argument count the function will return
HERON_NULL_POINTER.

int HeronHsbEndOfReceiveMessage(HeronHSB *handle)
The process of receiving a message is made up of three parts. The first part involves waiting
to be addressed by the transmitting end. The second part is the reception of the data bytes,
and the third part is ending the message and waiting for the bus to return to a free state.

The function HeronHsbEndOfReceiveMessage will perform the third part of message
reception. As such, this function must be used in combination with the functions
HeronHsbStartReceiveMessage and HeronHsbReceiveMessageData.

Please note where possible, the user should use the function HeronHsbReceiveMessage
when receiving a message over HSB. The function HeronHsbEndOfReceiveMessage
should only be used where it is not possible to use the standard receive message function.

This function operates on the HSB device specified through the argument handle. This
device handle is the handle returned by the function HeronHsbOpen.

This function must be called to end the reception of a HSB message after successfully
detecting an incoming message through a call to HeronHsbStartReceiveMessage, and
after one or more successful calls to the function HeronHsbReceiveMessageData.

If an invalid HSB device handle is passed into HeronHsbEndOfReceiveMessage, the
function will return HERON_INVALID_HANDLE, else the function will end the message and
return HERON_OK.

59 HUNT ENGINEERING HERON-API USER MANUAL

General Hardware Access Functions

void HeronConfigOff()
This function causes the HERON module to release its drive from the Config signal.

void HeronConfigOn()
This function causes the HERON module to assert its drive of the Config signal.

inline Int HeronDigioIn()
This function returns the value of the digital inputs.

inline Void HeronDigioOut(int byte)
This function puts the value “byte” onto the digital output lines.

int HeronModId()
This function returns the Module ID in the bottom four bits of the integer returned and the
Carrier ID in the next four bits.

60 HUNT ENGINEERING HERON-API USER MANUAL

Uncommitted Module Interconnect (UMI) Functions

int HeronUmiIn(int line)
This function selects which of the Uncommitted Module Interconnect lines is used to drive
the Timer In pin (TINP) of the CPUs’ Timer 0. The argument line is used to specify the
UMI line to connect.

This function is only supported by the HERON1. For all other module types you must use
the correct HeronUmix_In function, where x is the UMI line that you wish to control.

int HeronUmiOut(int line)
This function selects which of the Uncommitted Module Interconnect lines is driven by the
Timer Out pin (TOUT) of the CPU’s Timer 0. The argument line is used to specify the
UMI line to connect.

This function is only supported by the HERON1. For all other module types you must use
the correct HeronUmix_Out function, where x is the UMI line that you wish to control.

int HeronUmi0_In(int select, unsigned int *umi_value)
This function selects which Timer In pin (TINP) is driven by UMI0. The function is not
supported by the HERON1, therefore when using the HERON1 module you must use the
function HeronUmiIn.

The argument select is used to specify whether UMI0 is connected to the Timer In pin
of Timer 0 or Timer 1.

The function will return the state of UMI0 line into the integer pointed to by the argument
umi_value. If this pointer argument is NULL, then the state of UMI0 is ignored.

When connecting UMI0 to the timer input of either Timer, any previous connection to that
timer will be overwritten, while the other timer setting will remain unaffected.

The heronx.h header file includes three definitions that should be used for the select
argument. The definitions are listed below.

 To connect UMI0 to Timer 0, use: HERON_UMI_TIMER0
 To connect UMI0 to Timer 1, use: HERON_UMI_TIMER1
 To read the state of UMI0 only: HERON_UMI_READ

Note, the last choice will only read the state of the UMI0 line using the integer pointed to
by the argument umi_value. Using this choice will not alter the current connection made
by the UMI0 line.

For example to connect to the TINP pin of Timer 1 and to read the state of the UMI0 line
into the integer ‘umi0_val’, the function call would be performed as follows:
 status = HeronUmi0_In(HERON_UMI_TIMER1,&umi0_val);

If the connection specified by the argument select can not be performed the function
will return HERON_INVALID_SELECTION. If the function is able to make the selected
connection to the UMI line, the function returns HERON_OK.

61 HUNT ENGINEERING HERON-API USER MANUAL

int HeronUmi1_In(int select, unsigned int *umi_value)
This function selects which Timer In pin (TINP) is driven by UMI1. The function is not
supported by the HERON1, therefore when using the HERON1 module you must use the
function HeronUmiIn.

The argument select is used to specify whether UMI1 is connected to the Timer In pin
of Timer 0 or Timer 1.

The function will return the state of UMI1 line into the integer pointed to by the argument
umi_value. If this pointer argument is NULL, then the state of UMI1 is ignored.

When connecting UMI1 to the timer input of either Timer, any previous connection to that
timer will be overwritten, while the other timer setting will remain unaffected.

The heronx.h header file includes three definitions that should be used for the select
argument. The definitions are listed below.

 To connect UMI1 to Timer 0, use: HERON_UMI_TIMER0
 To connect UMI1 to Timer 1, use: HERON_UMI_TIMER1
 To read the state of UMI1 only: HERON_UMI_READ

Note, the last choice will only read the state of the UMI1 line using the integer pointed to
by the argument umi_value. Using this choice will not alter the current connection made
by the UMI1 line.

For example to connect to the TINP pin of Timer 1 and to read the state of the UMI1 line
into the integer ‘umi1_val’, the function call would be performed as follows:

 status = HeronUmi1_In(HERON_UMI_TIMER1,&umi1_val);

If the connection specified by the argument select can not be performed the function
will return HERON_INVALID_SELECTION. If the function is able to make the selected
connection to the UMI line, the function returns HERON_OK.

int HeronUmi2_In(int select, unsigned int *umi_value)
This function selects which Timer In pin (TINP) is driven by UMI2. The function is not
supported by the HERON1, therefore when using the HERON1 module you must use the
function HeronUmiIn.

The argument select is used to specify whether UMI2 is connected to the Timer In pin
of Timer 0 or Timer 1.

The function will return the state of UMI2 line into the integer pointed to by the argument
umi_value. If this pointer argument is NULL, then the state of UMI2 is ignored.

When connecting UMI2 to the timer input of either Timer, any previous connection to that
timer will be overwritten, while the other timer setting will remain unaffected.

The heronx.h header file includes three definitions that should be used for the select
argument. The definitions are listed below.

 To connect UMI2 to Timer 0, use: HERON_UMI_TIMER0
 To connect UMI2 to Timer 1, use: HERON_UMI_TIMER1
 To read the state of UMI2 only: HERON_UMI_READ

62 HUNT ENGINEERING HERON-API USER MANUAL

Note, the last choice will only read the state of the UMI2 line using the integer pointed to
by the argument umi_value. Using this choice will not alter the current connection made
by the UMI2 line.

For example to connect to the TINP pin of Timer 1 and to read the state of the UMI2 line
into the integer ‘umi2_val’, the function call would be performed as follows:

 status = HeronUmi2_In(HERON_UMI_TIMER1,&umi2_val);

If the connection specified by the argument select can not be performed the function
will return HERON_INVALID_SELECTION. If the function is able to make the selected
connection to the UMI line, the function returns HERON_OK.

int HeronUmi3_In(int select, unsigned int *umi_value)
This function selects which Timer In pin (TINP) is driven by UMI3. The function is not
supported by the HERON1, therefore when using the HERON1 module you must use the
function HeronUmiIn.

The argument select is used to specify whether UMI3 is connected to the Timer In pin
of Timer 0 or Timer 1.

The function will return the state of UMI3 line into the integer pointed to by the argument
umi_value. If this pointer argument is NULL, then the state of UMI3 is ignored.

When connecting UMI3 to the timer input of either Timer, any previous connection to that
timer will be overwritten, while the other timer setting will remain unaffected.

The heronx.h header file includes three definitions that should be used for the select
argument. The definitions are listed below.

 To connect UMI3 to Timer 0, use: HERON_UMI_TIMER0
 To connect UMI3 to Timer 1, use: HERON_UMI_TIMER1
 To read the state of UMI3 only: HERON_UMI_READ

Note, the last choice will only read the state of the UMI3 line using the integer pointed to
by the argument umi_value. Using this choice will not alter the current connection made
by the UMI3 line.

For example to connect to the TINP pin of Timer 1 and to read the state of the UMI3 line
into the integer ‘umi3_val’, the function call would be performed as follows:

 status = HeronUmi3_In(HERON_UMI_TIMER1,&umi3_val);

If the connection specified by the argument select can not be performed the function
will return HERON_INVALID_SELECTION. If the function is able to make the selected
connection to the UMI line, the function returns HERON_OK.

63 HUNT ENGINEERING HERON-API USER MANUAL

int HeronUmi0_Out(int select)
This function selects how UMI0 is driven. The function is not supported by the HERON1,
therefore when using the HERON1 module you must use the function HeronUmiOut.

There are five options for how each UMI line is driven. A UMI line may be driven by the
Timer Out pin (TOUT) of Timer 0, by the Timer Out pin of Timer 1, it may be set low, or
set high, or not driven. The argument select is used to specify which of these five
options is required.

The heronx.h header file includes five definitions that should be used for the select
argument. The definitions are listed below.

 To drive UMI0 by Timer 0, use: HERON_UMI_TIMER0
 To drive UMI0 by Timer 1, use: HERON_UMI_TIMER1
 To drive UMI0 low, use: HERON_UMI_LOGIC0
 To drive UMI0 high, use: HERON_UMI_LOGIC1
 To set UMI0 to be not driven, use: HERON_UMI_UNDRIVEN

For example to drive UMI0 with the TOUT pin of Timer 0, the function call would be
performed as follows:

 status = HeronUmi0_Out(HERON_UMI_TIMER0);

If the connection specified by the argument select can not be performed the function
will return HERON_INVALID_SELECTION. If the function is able to make the selected
connection to the UMI line, the function returns HERON_OK.

int HeronUmi1_Out(int select)
This function selects how UMI1 is driven. The function is not supported by the HERON1,
therefore when using the HERON1 module you must use the function HeronUmiOut.

There are five options for how each UMI line is driven. A UMI line may be driven by the
Timer Out pin (TOUT) of Timer 0, by the Timer Out pin of Timer 1, it may be set low, or
set high, or not driven. The argument select is used to specify which of these five
options is required.

The heronx.h header file includes five definitions that should be used for the select
argument. The definitions are listed below.

 To drive UMI1 by Timer 0, use: HERON_UMI_TIMER0
 To drive UMI1 by Timer 1, use: HERON_UMI_TIMER1
 To drive UMI1 low, use: HERON_UMI_LOGIC0
 To drive UMI1 high, use: HERON_UMI_LOGIC1
 To set UMI1 to be not driven, use: HERON_UMI_UNDRIVEN

For example to drive UMI1 with the TOUT pin of Timer 0, the function call would be
performed as follows:

 status = HeronUmi1_Out(HERON_UMI_TIMER0);

If the connection specified by the argument select can not be performed the function
will return HERON_INVALID_SELECTION. If the function is able to make the selected

64 HUNT ENGINEERING HERON-API USER MANUAL

connection to the UMI line, the function returns HERON_OK.

int HeronUmi2_Out(int select)
This function selects how UMI2 is driven. The function is not supported by the HERON1,
therefore when using the HERON1 module you must use the function HeronUmiOut.

There are five options for how each UMI line is driven. A UMI line may be driven by the
Timer Out pin (TOUT) of Timer 0, by the Timer Out pin of Timer 1, it may be set low, or
set high, or not driven. The argument select is used to specify which of these five
options is required.

The heronx.h header file includes five definitions that should be used for the select
argument. The definitions are listed below.

 To drive UMI2 by Timer 0, use: HERON_UMI_TIMER0
 To drive UMI2 by Timer 1, use: HERON_UMI_TIMER1
 To drive UMI2 low, use: HERON_UMI_LOGIC0
 To drive UMI2 high, use: HERON_UMI_LOGIC1
 To set UMI2 to be not driven, use: HERON_UMI_UNDRIVEN

For example to drive UMI2 with the TOUT pin of Timer 0, the function call would be
performed as follows:

 status = HeronUmi2_Out(HERON_UMI_TIMER0);

If the connection specified by the argument select can not be performed the function
will return HERON_INVALID_SELECTION. If the function is able to make the selected
connection to the UMI line, the function returns HERON_OK.

int HeronUmi3_Out(int select)
This function selects how UMI3 is driven. The function is not supported by the HERON1,
therefore when using the HERON1 module you must use the function HeronUmiOut.

There are five options for how each UMI line is driven. A UMI line may be driven by the
Timer Out pin (TOUT) of Timer 0, by the Timer Out pin of Timer 1, it may be set low, or
set high, or not driven. The argument select is used to specify which of these five
options is required.

The heronx.h header file includes five definitions that should be used for the select
argument. The definitions are listed below.

 To drive UMI3 by Timer 0, use: HERON_UMI_TIMER0
 To drive UMI3 by Timer 1, use: HERON_UMI_TIMER1
 To drive UMI3 low, use: HERON_UMI_LOGIC0
 To drive UMI3 high, use: HERON_UMI_LOGIC1
 To set UMI3 to be not driven, use: HERON_UMI_UNDRIVEN

For example to drive UMI3 with the TOUT pin of Timer 0, the function call would be
performed as follows:

 status = HeronUmi3_Out(HERON_UMI_TIMER0);

65 HUNT ENGINEERING HERON-API USER MANUAL

If the connection specified by the argument select can not be performed the function
will return HERON_INVALID_SELECTION. If the function is able to make the selected
connection to the UMI line, the function returns HERON_OK.

int HeronEnableUmiInt(int umi, int polarity)
This function is used to enable an interrupt on the selected UMI line. This function is not
supported by the HERON1.

The argument umi selects the UMI line, (from UMI 0 to UMI 3), for which an interrupt
will be enabled. The interrupt can be configured as a rising edge interrupt or a falling edge.

To set the interrupt to be a rising edge on the selected UMI line, set the argument
polarity to 1. To set the interrupt to be a falling edge on the selected UMI line, set the
argument polarity to 0.

When the interrupt occurs, the HERON-API posts either a DSP/BIOS semaphore, or
DSP/BIOS software interrupt (SWI). In order to do this the function must be used in
conjunction with either HeronInstallUmiSwi or HeronInstallUmiSemaphore.

If you require a DSP/BIOS software interrupt (SWI) to occur when an interrupt is received,
you should install a SWI using the function HeronInstallUmiSwi for the same UMI
line.

Alternatively, if you require a DSP/BIOS task to block until the interrupt is received, you
should install a semaphore using the function HeronInstallUmiSemaphore for the
same UMI line.

If the argument umi is not in the range 0 to 3, or if the argument polarity is not set to 0
or 1, the function will return HERON_INVALID_SELECTION. If the function call is
successful, the function returns HERON_OK.

int HeronDisableUmiInt(int umi)
This function is used to disable an interrupt that was previously enabled with a call to
HeronEnableUmiInt. This function is not supported by the HERON1.

The argument umi selects the UMI line for which the interrupt is to be disabled.

If the argument umi is not in the range 0 to 3 the function will return
HERON_INVALID_SELECTION, else the function will return HERON_OK.

66 HUNT ENGINEERING HERON-API USER MANUAL

int HeronInstallUmiSwi(int umi, SWI_Obj *swi)
This function is used to install a DSP/BIOS software interrupt (SWI) on to a UMI
interrupt. This function is not supported by the HERON1.

The argument umi selects the UMI line for which the SWI will be installed. When an
interrupt occurs on the associated UMI line, the HERON-API will post a software
interrupt using the SWI_Obj object provided by the argument swi.

Once a software interrupt has been installed with this function, the interrupt can be enabled
with a call to the function HeronEnableUmiInt.

If the argument umi is not in the range 0 to 3 the function will return
HERON_INVALID_SELECTION, else the function will return HERON_OK.

int HeronInstallUmiSemaphore(int umi, SEM_Obj *sem)
This function is used to install a DSP/BIOS semaphore on to a UMI interrupt. This
function is not supported by the HERON1.

The argument umi selects the UMI line for which the semaphore will be installed. When an
interrupt occurs on the associated UMI line, the HERON-API will post a semaphore using
the SEM_Obj object provided by the argument swi.

Once a semaphore has been installed with this function, the interrupt can be enabled with a
call to the function HeronEnableUmiInt.

If the argument umi is not in the range 0 to 3 the function will return
HERON_INVALID_SELECTION, else the function will return HERON_OK.

67 HUNT ENGINEERING HERON-API USER MANUAL

The HERON-API Library

Where is the Library?
The library is installed as part of the HUNT ENGINEERING API (host-side API)
installation program. It will appear in the directory that you chose for the API installation,
in the sub-directory \heron_api\lib. The default location is \heapi\heron_api\lib.
The HUNT ENGINEERING API installation actually sets an environmental variable
HEAPI_DIR to show which installation directory you chose, so the library can be addressed
as %HEAPI_DIR%\heron_api\lib.

When selecting a library to use in your application, please refer to the section ‘Selecting the
Right Library for you Application’.

Herons.lib ’C6000 library. Data access is near, and code access is near.

Heronl0.lib ’C6000 library. Data access is far, and code access is near.

Heronl1.lib ’C6000 library. Data access is near, and code access is far.

Heronl3.lib ’C6000 library. Data access is far, and code access is far.

Where is the Source Code?
The source code for all functions in the HERON-API library can be found in the directory
that you chose for the API installation, in the sub-directory \heron_api\src.

You should not change the HERON-API source code yourself, as that will prevent you
from easily using later versions provided by HUNT ENGINEERING. This source code is
provided to you for reference only. If you do make changes to this source code please
inform HUNT ENGINEERING what you have done so that it could be included in the
released software.

Can I Compile the Library?
For each module type there is a sub-directory below the directory \heron_api\src. For
example, for the HERON1 module type the HERON-API source is located in the sub-
directory \heron_api\src\heron1. In each of these sub-directories there is a batch file
called heron_api.bat. This batch file actually calls another batch file, named
makelib6.bat. This batch file does the actual work but it takes some parameters. The
heron_api.bat merely sets these parameters and then invokes the makelib6.bat
batch file.

Again, it is not recommended that you change the HERON-API sources yourself as this
could prevent you from easily using later versions provided by HUNT ENGINEERING.

68 HUNT ENGINEERING HERON-API USER MANUAL

Example Programs

On the HUNT ENGINEERING CD there are some examples of using the
HERON_API. Use the CD front end program to select “software examples”. There are
some pure HERON-API examples in the directory “heron_api_examples”, and a general
starting point example in the “starting_development” directory. The IO board examples in
the directory “board_examples” also show the use of the HERON-API.

69 HUNT ENGINEERING HERON-API USER MANUAL

Technical Support

Technical support for HUNT ENGINEERING products should first be obtained from the
comprehensive Support section www.hunteng.co.uk/support/index.htm on the HUNT
ENGINEERING web site. This includes FAQs, latest product, software and
documentation updates etc. Or contact your local supplier - if you are unsure of details
please refer to www.hunteng.co.uk for the list of current re-sellers.

HUNT ENGINEERING technical support can be contacted by emailing
support@hunteng.demon.co.uk, calling the direct support telephone number +44 (0)1278
760775, or by calling the general number +44 (0)1278 760188 and choosing the technical
support option.

http://www.hunteng.co.uk/support/support.htm
www.hunteng.co.uk
mailto:support@hunteng.demon.co.uk

70 HUNT ENGINEERING HERON-API USER MANUAL

Appendix 1: Implementation for HERON1

Processor Interrupts
When transferring data to or from FIFOs the HERON-API will use DMAs. For the
HERON1, the HERON-API provides two different methods for using the DMA channels
that are available. The first (default) method is referred to as floating DMA, and the second
method is dedicated DMA.

The HERON-API implements a group of floating DMA channels. The floating DMA
channels are used on a first come first serve basis to meet the needs of any FIFO transfer
that is in progress. Each time a block needs to be transferred, the next free DMA resource
is used, leaving one less resource for the next transfer that comes along. When there is a
transfer to be performed and all DMA channels are in use, the transfer will wait until a
DMA channel becomes free.

When transferring data using the floating DMA method, the HERON-API will divide the
whole DMA transfer into blocks. For each of these blocks a processor interrupt is required
by the HERON-API in order to update how much has been done and to restart a DMA for
the next block.

There are several ways in which a user application can affect the processor interrupts
required by the HERON-API when performing a DMA transfer. Interrupts can be stopped
by switching of global interrupts in the CSR register of the CPU and by writing tight loops
of code that result in a sequence of assembly instructions that is un-interruptable.

For a blocking data-transfer, such as the transfer from one processor to another, disabling
interrupts in this way will mean that DMA transfers are halted by the HERON-API until an
interrupt occurs and the DMA can continue and as a result the performance of the blocking
transfer will drop.

However, for a non-blocking transfer, such as the transfer from a high speed A to D
module to the processor, this will typically result in the loss of data.

It is therefore very important to consider how interrupts are affected by any program you
write.

Firstly, it is vital that interrupts are globally enabled while using the HERON-API for the
HERON1. Please ensure that if interrupts are disabled globally, that this is only done for a
very short time (for no more than a few C instructions), before interrupts are re-enabled. To
be complete safe, it is recommend that global interrupts are never disabled.

Secondly, when writing highly optimised loops that contain a small number of instructions
that un-interruptable loops are avoided. If an un-interruptable loop is created you must
ensure that the processor will not remain in that loop for long, in order that interrupts can
continue once it has completed, and the HERON-API can continue DMA transfers.

71 HUNT ENGINEERING HERON-API USER MANUAL

Dedicated DMA
The HeronOpenFifo, HeronSwiOpenFifo and HeronSemOpenFifo functions of the
HERON-API provide a switch to open a FIFO with a dedicated DMA.

The dedicated switch in the call to HeronOpenFifo, HeronSwiOpenFifo or
HeronSemOpenFifo enables a DMA channel to be allocated to the FIFO specified in the
function call.

This means that for the specified FIFO, any transfer will continue straight away using the
resource that it was allocated. This removes the possibility that a floating DMA channel was
not available and therefore removes any potential delay to that transfer.

The use of dedicated DMA channels is therefore recommended for high performance
transfers such as those from a high bandwidth A to D module.

For the Streaming I/O function HeronSioOpenFifo, the FIFO will always being opened
to use dedicated DMA.

72 HUNT ENGINEERING HERON-API USER MANUAL

Appendix 2: Implementation for HERON4

Processor Interrupts
When transferring data to or from FIFOs the HERON-API will use DMAs. For the
HERON4, the HERON-API provides two different methods for using the DMA channels
that are available. The first (default) method is referred to as floating DMA, and the second
method is dedicated DMA.

The HERON-API implements a group of floating DMA channels. The floating DMA
channels are used on a first come first serve basis to meet the needs of any FIFO transfer
that is in progress. Each time a block needs to be transferred, the next free DMA resource
is used, leaving one less resource for the next transfer that comes along. When there is a
transfer to be performed and all DMA channels are in use, the transfer will wait until a
DMA channel becomes free.

When transferring data using the floating DMA method, the HERON-API will divide the
whole DMA transfer into blocks. For each of these blocks a processor interrupt is required
by the HERON-API in order to update how much has been done and to restart a DMA for
the next block.

There are several ways in which a user application can affect the processor interrupts
required by the HERON-API when performing a DMA transfer. Interrupts can be stopped
by switching of global interrupts in the CSR register of the CPU and by writing tight loops
of code that result in a sequence of assembly instructions that is un-interruptable.

For a blocking data-transfer, such as the transfer from one processor to another, disabling
interrupts in this way will mean that DMA transfers are halted by the HERON-API until an
interrupt occurs and the DMA can continue and as a result the performance of the blocking
transfer will drop.

However, for a non-blocking transfer, such as the transfer from a high speed A to D
module to the processor, this will typically result in the loss of data.

It is therefore very important to consider how interrupts are affected by any program you
write.

Firstly, it is vital that interrupts are globally enabled while using the HERON-API for the
HERON4. Please ensure that if interrupts are disabled globally, that this is only done for a
very short time (for no more than a few C instructions), before interrupts are re-enabled. To
be complete safe, it is recommend that global interrupts are never disabled.

Secondly, when writing highly optimised loops that contain a small number of instructions
that un-interruptable loops are avoided. If an un-interruptable loop is created you must
ensure that the processor will not remain in that loop for long, in order that interrupts can
continue once it has completed, and the HERON-API can continue DMA transfers.

73 HUNT ENGINEERING HERON-API USER MANUAL

Dedicated DMA
The HeronOpenFifo, HeronSwiOpenFifo and HeronSemOpenFifo functions of the
HERON-API provide a switch to open a FIFO with a dedicated DMA.

The dedicated switch in the call to HeronOpenFifo, HeronSwiOpenFifo or
HeronSemOpenFifo enables a DMA channel to be allocated to the FIFO specified in the
function call.

This means that for the specified FIFO, any transfer will continue straight away using the
resource that it was allocated. This removes the possibility that a floating DMA channel was
not available and therefore removes any potential delay to that transfer.

The use of dedicated DMA channels is therefore recommended for high performance
transfers such as those from a high bandwidth A to D module.

For the Streaming I/O function HeronSioOpenFifo, the FIFO will always being opened
to use dedicated DMA.

	Introduction
	FIFO Accesses
	User DMA Management
	HERON Serial Bus Functions
	Hardware Specific Functions

	Software Structure of HERON-API
	Migrating from Previous Versions of the HERON-API
	FIFO Accessing
	FIFO Access Models
	The WaitIo Model
	The TestIo Model
	The SWI Model
	The SEM Model
	The SIO Model

	An Example of FIFO Access with the WaitIo Model
	An Example of FIFO Access with the TestIo Model
	An Example of FIFO Access with the SWI Model
	An Example of FIFO Access with the SEM Model
	An Example of FIFO Access with the Streaming I/O Model

	User DMA Management
	Hardware Access Functions
	HERON Serial Bus Functions
	HSB Messages
	The Message Type
	HSB and EM2 Inter-Board Connectors

	Selecting the Right Library for your Application
	
	Data Access
	Code Access
	Choosing a Library

	Linking Issues
	Building your Application
	Building an Application for Use with the Server/Loader

	How it Works With DSP/BIOS
	Using the HERON-API Inline Functions

	HERON-API Functions
	FIFO Access Functions
	HeronFIFO *HeronOpenFifo(int fifono, char *s)
	Dedicated DMA
	DMA/CPU Priority
	Error Conditions

	HeronFIFO *HeronSwiOpenFifo(int fifono, char *s, SWI_Obj *swi)
	Using a Software Interrupt
	Dedicated DMA
	DMA/CPU Priority
	Error Conditions

	HeronFIFO *HeronSemOpenFifo(int fifono, char *s, SEM_Obj *sem)
	Using a Semaphore
	Dedicated DMA
	DMA/CPU Priority
	Error Conditions

	HeronFIFO *HeronSioOpenFifo(int fifono, char *s, SIO_Obj *sio, Ptr *pbuffer)
	Using SIO
	Error Conditions

	inline int HeronRead(HeronFIFO *handle, void *buffer, unsigned int size)
	int HeronRestartRead(HeronFIFO *handle, void *buffer)
	inline unsigned int HeronReadWord(HeronFIFO *handle, int *status)
	inline int HeronSioRead(HeronFIFO *handle, Ptr *pbuffer)
	The SIO FIFO Read Trash Buffer
	The Trash Count

	int HeronSioReadAlign(HeronFIFO *handle, int n, Ptr *pbuffer)
	inline int HeronWrite(HeronFIFO *handle, void *buffer, unsigned int size)
	int HeronRestartWrite(HeronFIFO *handle, void *buffer)
	inline int HeronWriteWord(HeronFIFO *handle, unsigned int data)
	inline int HeronSioWrite(HeronFIFO *handle, Ptr *pbuffer)
	int HeronTestIo(HeronFIFO *handle)
	int HeronWaitIo(HeronFIFO *handle)
	int HeronClose(HeronFIFO *handle)
	int HeronSioClose(HeronFIFO *handle)
	int HeronCancelIo(HeronFIFO *handle)
	int HeronCancelWithFlush(HeronFIFO *handle, unsigned int *done)

	User DMA Management Functions
	int HeronDmaClaim()
	int HeronDmaFree(int dma)
	int HeronInstallIsr(unsigned int isr, int int_num)

	HERON Serial Bus Functions
	HeronHSB *HeronHsbOpen()
	int HeronHsbClose(HeronHSB *handle)
	int HeronHsbSendMessage(HeronHSB *handle, int msg_type, int board, int slot, unsigned char *buffer, unsigned int size)
	int HeronHsbSendMessageEx(HeronHSB *handle, int msg_type, int board, int slot, unsigned char *buffer, unsigned int size, int retries)
	int HeronHsbReceiveMessage(HeronHSB *handle, int *msg_type, int board, int slot, unsigned char *buffer, unsigned int size, unsigned int *count)
	int HeronHsbStartSendMessage(HeronHSB *handle, int board, int slot)
	int HeronHsbSendMessageData(HeronHSB *handle, unsigned char *buffer, unsigned int size)
	int HeronHsbEndOfSendMessage(HeronHSB *handle)
	int HeronHsbStartReceiveMessage(HeronHSB *handle, unsigned char *id)
	int HeronHsbReceiveMessageData(HeronHSB *handle, unsigned char *buffer, unsigned int size, unsigned int *count)
	int HeronHsbEndOfReceiveMessage(HeronHSB *handle)

	General Hardware Access Functions
	void HeronConfigOff()
	void HeronConfigOn()
	inline Int HeronDigioIn()
	inline Void HeronDigioOut(int byte)
	int HeronModId()

	Uncommitted Module Interconnect (UMI) Functions
	int HeronUmiIn(int line)
	int HeronUmiOut(int line)
	int HeronUmi0_In(int select, unsigned int *umi_value)
	int HeronUmi1_In(int select, unsigned int *umi_value)
	int HeronUmi2_In(int select, unsigned int *umi_value)
	int HeronUmi3_In(int select, unsigned int *umi_value)
	int HeronUmi0_Out(int select)
	int HeronUmi1_Out(int select)
	int HeronUmi2_Out(int select)
	int HeronUmi3_Out(int select)
	int HeronEnableUmiInt(int umi, int polarity)
	int HeronDisableUmiInt(int umi)
	int HeronInstallUmiSwi(int umi, SWI_Obj *swi)
	int HeronInstallUmiSemaphore(int umi, SEM_Obj *sem)

	The HERON-API Library
	Where is the Library?
	Where is the Source Code?
	Can I Compile the Library?

	Example Programs
	Technical Support
	Appendix 1: Implementation for HERON1
	
	Processor Interrupts
	Dedicated DMA

	Appendix 2: Implementation for HERON4
	
	Processor Interrupts
	Dedicated DMA

