

HUNT ENGINEERING
Chestnut Court, Burton Row,

Brent Knoll, Somerset, TA9 4BP, UK
Tel: (+44) (0)1278 760188,
Fax: (+44) (0)1278 760199,

Email: sales@hunteng.co.uk
http://www.hunteng.co.uk
http://www.hunt-dsp.com

HUNT ENGINEERING

HEL_UNPACK.LIB

USER MANUAL
Unpacking / data access library for Hunt

Engineering ADC & DAC modules.
Many multichannel devices such as ADCs multiplex channels of data
onto a single HERON FIFO. These channels need to be separated before
processing, or packed together before output. The library described here
provides efficient assembly-coded routines to pack or unpack the data
to/from separate arrays, and optionally to convert it to a different format.

Software Rev 1.4
Document Rev 1.4
R.Weir 14/11/01

2 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

COPYRIGHT
This documentation and the product it is supplied with are Copyright HUNT
ENGINEERING 2001. All rights reserved. HUNT ENGINEERING maintains a policy
of continual product development and hence reserves the right to change product
specification without prior warning.

WARRANTIES LIABILITY and INDEMNITIES
HUNT ENGINEERING warrants the hardware to be free from defects in the material
and workmanship for 12 months from the date of purchase. Product returned under the
terms of the warranty must be returned carriage paid to the main offices of HUNT
ENGINEERING situated at BRENT KNOLL Somerset UK, the product will be repaired
or replaced at the discretion of HUNT ENGINEERING.

Exclusions - If HUNT ENGINEERING decides that there is any evidence of
electrical or mechanical abuse to the hardware, then the customer shall have no
recourse to HUNT ENGINEERING or its agents. In such circumstances HUNT
ENGINEERING may at its discretion offer to repair the hardware and charge for
that repair.

Limitations of Liability - HUNT ENGINEERING makes no warranty as to the
fitness of the product for any particular purpose. In no event shall HUNT
ENGINEERING’S liability related to the product exceed the purchase fee actually
paid by you for the product. Neither HUNT ENGINEERING nor its suppliers
shall in any event be liable for any indirect, consequential or financial damages
caused by the delivery, use or performance of this product.

Because some states do not allow the exclusion or limitation of incidental or consequential
damages or limitation on how long an implied warranty lasts, the above limitations may not
apply to you.

TECHNICAL SUPPORT
Technical support for HUNT ENGINEERING products should first be obtained from the
comprehensive Support section www.hunteng.co.uk/support/index.htm on the HUNT
ENGINEERING web site. This includes FAQs, latest product, software and
documentation updates etc. Or contact your local supplier - if you are unsure of details
please refer to www.hunteng.co.uk for the list of current re-sellers.

HUNT ENGINEERING technical support can be contacted by emailing
support@hunteng.demon.co.uk, calling the direct support telephone number +44 (0)1278
760775, or by calling the general number +44 (0)1278 760188 and choosing the technical
support option.

http://www.hunteng.co.uk/support/index.htm
www.hunteng.co.uk

3 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

TABLE OF CONTENTS
LIBRARY HISTORY.. 4

INTRODUCTION.. 5

WHERE DO I FIND THE LIBRARY? ... 6

FUNCTIONS .. 7
ADC UNPACKERS ... 7

Data Format Conversion... 7
Data Buffer Formats.. 7
Assumptions & Notes ... 7
Alignment of arrays ... 7
HEL_Unpack16bitYchan ... 8
HEL_Unpack32bitYchan ... 9
HEL_UnpackBin16bitYchan ... 10
HEL_UnpackBin32bitYchan ... 11
HEL_UnpackSe16bitYchan ... 12

DAC PACKERS.. 13
Data Format Conversion... 13
Data Buffer Formats.. 13
Assumptions & Notes ... 13
HEL_Pack16bitYchan ... 14
HEL_Pack32bitYchan ... 15
HEL_PackBin16bitYchan.. 16
HEL_PackBin32bitYchan.. 17
HEL_PackBin2h16bitYchan.. 18

PERFORMANCE NOTES.. 19

SOURCE CODE .. 21

TECHNICAL SUPPORT.. 22

4 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

Library History

V1.0 Released 22nd October 2000

1st release of library – contained unpackers for 12 & 16-bit ADCs.

V1.1 Released 8th December 2000

2nd release offered a more consistent interface with increased
flexibility, extended functionality, and an improved manual.
Major additions were:

• Packers for 12/14 & 16-bit DACs were introduced.
These should support all ADCs up to 16-bit for the
foreseeable future.

• Calling conventions for unpackers were changed to
allow the wordlength-limiting mask to be passed as a
parameter.

Changing the calling convention means that source-code
modifications are needed to upgrade to this version of the library.
However, they extend the library’s abilities to cater for additional
wordlength ADCs that we may supply in the future.

V1.2 Released 12th Feb 2001

This release fixed a problem when using masks that have the top
but set. All masks are now defined as unsigned to prevent this
problem.

V1.3 Released 20th April 2001

Added HEL_UnpackSe16BitYchan functions, to support HERON
-IO. The functions unpack and sign-extend a 12-bit data value.

Added HEL_PackBin2h16BitYchan functions, to support GD14
data formats. It accepts an array of signed shorts, and packs them
into proper GD14 data format.

V1.4 Released 14th November 2001

HEL_UnpackSe16BitYchan functions now support any data
length, not only 12-bit data. The functions unpack and sign-extend
any xx-bit data value, with xx in [15..1].

5 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

Introduction

In many cases, I/O modules used with HERON systems pack their data into a single
stream. This allows multi-channel modules to operate with a single FIFO. It is the only
way that a GDIO module can implement multiple channels – the GDIO specification
includes only one channel; and it is a very practical way of ensuring data remains
synchronised through the system.

However, this data format is not always ideal for processing. The incoming data stream
may include tag or address information, and the multiplex within the stream may make it
difficult to access consecutive points with signal processing algorithms. It is usually most
appropriate to unpack the data into separate arrays.

For output devices, the data may include control information – such as the last channel bit,
or channel address. This must be added before the data is multiplexed for output.

This library implements a suite of routines which implement unpacking / packing for the
data types used in Hunt Engineering I/O modules. In addition, the data’s format may be
converted to 2’s complement if required. This is performed as it is unpacked, with almost
no time penalty.

6 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

Where do I find the library?

When you have made a normal software installation from the HUNT ENGINEERING
CD, the library and header file for HEL_Unpack have been placed in the heron_unpack
directory under your API installation directory. i.e. %HEAPI%\heron_unpack

The “Create New HERON Project” plug-in for Code Composer Studio will automatically
include this library into a new project, and will add the directory to the include path. This
means that the functions in this library can be used in any project without concern.

7 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

Functions

ADC Unpackers

Data Format Conversion
There are two sets of unpackers, covering 16-bit and 32-bit data sources. The 32-bit
unpackers assume that a single sample is contained in one half of a 32-bit word, as in the
case with the 16-bit ADCs; while the 16-bit unpackers assume that the sample is contained
within some a 16-bit word. In either case, the library can extract different wordlengths –
for example, the 16-bit unpackers can extract 12 or 14-bit samples.

The unpackers are split into two groups. The first group unpack the data directly, and
perform no format conversion. The second group convert the data from “offset binary” to
“2’s complement”. Offset Binary is a common format used on many ADCs & DACs.

Data Buffer Formats
Output data is in consecutive linear addressed buffers. It is assumed that the output buffers
are consecutive – see example.

The output data is 16-bit. Buffers allocated must be large enough to receive the results.

Assumptions & Notes
1. All code is interruptible to ensure maximum performance in HERON systems.

2. It is assumed that the first sample in the input buffer is from Channel #0, and
that all subsequent samples are from consecutive channels. This is the normal
startup sequence for HERON IO systems.

3. The unpacker functions will not detect a FIFO overflow. If FIFO overflow
occurs, synchronisation will be lost and must be regained externally.

4. In all cases it is assumed that each input buffer will contain at least 8 samples,
and that each output buffer will contain at least 2 samples.

5. It is also a condition that all buffers should contain an even number of samples
and be aligned to 32-bit boundaries. This allows the library to treat data as 32-bit
values, allowing faster data transfers.

Alignment of arrays
Many of the functions use arrays of shorts that must be aligned to 32-bit boundaries. This is
mentioned in the tables below along with **. This means that the data must be forced to be
aligned as follows:
/* allocate the errors array */

#pragma DATA_ALIGN(errors,4);

short errors[NO_OF_CHANNELS];

8 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

HEL_Unpack16bitYchan
Syntax:

#include “HEL_Unpack.h”
…

HEL_Unpack16bit1chan (short *input, unsigned short bitmask, short *output,
int samples_per_channel, short *errors);

HEL_Unpack16bit2chan (short *input, unsigned short bitmask, short *output,
int samples_per_channel, short *errors);

HEL_Unpack16bit3chan (short *input, unsigned short bitmask, short *output,
int samples_per_channel, short *errors);

HEL_Unpack16bit4chan (short *input, unsigned short bitmask, short *output,
int samples_per_channel, short *errors);

HEL_Unpack16bit8chan (short *input, unsigned short bitmask, short *output,
int samples_per_channel, short *errors);

HEL_Unpack16bit12chan (short *input, unsigned short bitmask, short *output,
int samples_per_channel, short *errors);

HEL_Unpack16bit16chan (short *input, unsigned short bitmask, short *output,
int samples_per_channel, short *errors);

Description:

This group of unpackers take a buffer of data from a 12-bit source, typically an
ADC, and split it into multiple output buffers – one per channel.

The data source must be compatible with Hunt Engineering 12-bit ADCs (right
justified, packed in 16-bit words; top 4 bits used as status).

The top four bits are cleared as the data is unpacked. This allows the data to be used
directly. All status information for an output buffer is logically ORed together and
saved to the *errors pointer, allowing checks to be made for flags being set or
overflow.

Parameters:
Input pointer to 16-bit input buffer, containing interleaved samples

from all active channels. This buffer must be aligned to a 32-bit
boundary.

Bitmask A 16-bit mask used to limit the data. For 16-bits use 0xffff; 14-
bits use 0x3fff; 12 bits use 0x0fff

Output pointer to first output buffer. Subsequent output buffers are
located immediately after this one. This buffer must be aligned
to a 32-bit boundary. Do not use the input buffer as the output as
this will cause data loss.

Samples_per_channel Number of samples per channel in the input buffer.

Errors Pointer to an array of 16 bit error values, one array entry per
channel. This array must be aligned to a 32 bit boundary**.
Some I/O modules include additional info in flags along with the
sample data. This is ORed together for each channel and stored
here.

9 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

HEL_Unpack32bitYchan
Syntax:

#include “HEL_Unpack.h”
…

HEL_Unpack32bit1chan (int *input, unsigned short bitmask, short *output, int
samples_per_channel, short *errors);

HEL_Unpack32bit2chan (int *input, unsigned short bitmask, short *output, int
samples_per_channel, short *errors);

HEL_Unpack32bit4chan (int *input, unsigned short bitmask, short *output, int
samples_per_channel, short *errors);

HEL_Unpack32bit8chan (int *input, unsigned short bitmask, short *output, int
samples_per_channel, short *errors);

Description:

This group of unpackers take a buffer of data from a 16-bit source, typically an
ADC, and split it into multiple output buffers – one per channel.

The data source must be compatible with Hunt Engineering 16-bit ADCs (right
justified, packed in 32-bit words; top 16 bits used as channel markers & status).

Only the sample data is saved to the output array. Thus, the output array is half the
size (in bytes) of the input array.

Parameters:
Input pointer to 32-bit input buffer, containing interleaved samples

from all active channels. This buffer must be aligned to a 32-bit
boundary.

Bitmask A 16-bit mask used to limit the data. For 16-bits use 0xffff; 14-
bits use 0x3fff; 12 bits use 0x0fff

Output pointer to first output buffer. Subsequent output buffers are
located immediately after this one. This buffer must be aligned
to a 32-bit boundary. Do not use the input buffer as the output as
this will cause data loss.

Samples_per_channel Number of samples per channel in the input buffer.

Errors Pointer to an array of 16 bit error values, one array entry per
channel. This array must be aligned to a 32 bit boundary**.
Some I/O modules include additional info in flags along with the
sample data. This is ORed together for each channel and stored
here.

10 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

HEL_UnpackBin16bitYchan
Syntax:

#include “HEL_Unpack.h”
…

HEL_UnpackBin16bit1chan (short *input, unsigned short bitmask, short *output, int
samples_per_channel, short *errors);

HEL_UnpackBin16bit2chan (short *input, unsigned short bitmask, short *output, int
samples_per_channel, short *errors);

HEL_UnpackBin16bit3chan (short *input, unsigned short bitmask, short *output, int
samples_per_channel, short *errors);

HEL_UnpackBin16bit4chan (short *input, unsigned short bitmask, short *output, int
samples_per_channel, short *errors);

HEL_UnpackBin16bit8chan (short *input, unsigned short bitmask, short *output, int
samples_per_channel, short *errors);

HEL_UnpackBin16bit12chan (short *input, unsigned short bitmask, short *output, int
samples_per_channel, short *errors);

HEL_UnpackBin16bit16chan (short *input, unsigned short bitmask, short *output, int
samples_per_channel, short *errors);

Description:

This group of unpackers take a buffer of data from a 12-bit source, typically an
ADC, and split it into multiple output buffers – one per channel. The data is
converted from offset binary to 2’s complement as it is unpacked.

The data source must be compatible with Hunt Engineering 12-bit ADCs (right
justified, packed in 16-bit words; top 4 bits used as status).

The top four bits are cleared as the data is unpacked. This allows the data to be used
directly. All status information for an output buffer is logically ORed together and
saved to the *errors pointer, allowing checks to be made for flags being set or
overflow.

Parameters:
Input pointer to 16-bit input buffer, containing interleaved samples from

all active channels. This buffer must be aligned to a 32-bit
boundary.

Bitmask A 16-bit mask used to limit the data. For 16-bits use 0xffff; 14-
bits use 0x3fff; 12 bits use 0x0fff

Output pointer to first output buffer. Subsequent output buffers are
located immediately after this one. This buffer must be aligned to
a 32-bit boundary. Do not use the input buffer as the output as this
will cause data loss.

Samples_per_channel Number of samples per channel in the input buffer.

Errors Pointer to an array of 16 bit error values, one array entry per
channel. This array must be aligned to a 32 bit boundary**. Some
I/O modules include additional info in flags along with the sample
data. This is ORed together for each channel and stored here.

11 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

HEL_UnpackBin32bitYchan
Syntax:

#include “HEL_Unpack.h”
…

HEL_UnpackBin32bit1chan (int *input, unsigned short bitmask, short *output,
int samples_per_channel, short *errors);

HEL_UnpackBin32bit2chan (int *input, unsigned short bitmask, short *output,
int samples_per_channel, short *errors);

HEL_UnpackBin32bit4chan (int *input, unsigned short bitmask, short *output,
int samples_per_channel, short *errors);

HEL_UnpackBin32bit8chan (int *input, unsigned short bitmask, short *output,
int samples_per_channel, short *errors);

Description:

This group of unpackers take a buffer of data from a 16-bit source, typically an
ADC, and split it into multiple output buffers – one per channel. The data is
converted from offset binary to 2’s complement as it is unpacked.

The data source must be compatible with Hunt Engineering 16-bit ADCs (right
justified, packed in 32-bit words; top 16 bits used as channel markers & status).

Only the sample data is saved to the output array. Thus, the output array is half the
size (in bytes) of the input array.

Parameters:
Input pointer to 32-bit input buffer, containing interleaved samples

from all active channels. This buffer must be aligned to a 32-
bit boundary.

Bitmask A 16-bit mask used to limit the data. For 16-bits use 0xffff;
14-bits use 0x3fff; 12 bits use 0x0fff

Output pointer to first output buffer. Subsequent output buffers are
located immediately after this one. This buffer must be aligned
to a 32-bit boundary. Do not use the input buffer as the output
as this will cause data loss.

Samples_per_channel Number of samples per channel in the input buffer.

Errors Pointer to an array of 16 bit error values, one array entry per
channel. This array must be aligned to a 32 bit boundary**.
Some I/O modules include additional info in flags along with
the sample data. This is ORed together for each channel and
stored here.

12 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

HEL_UnpackSe16bitYchan
Syntax:

#include “HEL_Unpack.h”
…

HEL_UnpackSe16bit1chan (short *input, unsigned short bitmask, short *output,
int samples_per_channel, short *errors);

HEL_UnpackSe16bit2chan (short *input, unsigned short bitmask, short *output,
int samples_per_channel, short *errors);

Description:

This group of unpackers take a buffer of data from a xx-bit source, typically a
HERON-IO, and split it into multiple output buffers – one per channel. The ‘xx-’
stands for a number of 1 to 15. E.g. the functions handle both 12 and 14 bit data.

The data source must be compatible with Hunt Engineering xx-bit ADCs (right
justified, packed in 16-bit words, top (16-xx) bits used as status).

The top bits are cleared, as the data is unpacked. The data is then sign-extended.
This means that an array of xx-bit ‘raw’ data samples is ready to be used as an array
of signed short integers. Example: a ‘raw’ data value of 0xffe will be sign-extended
to become 0xfffe, a short integer value –2. A data value of 0x2 will not change and
stay the same. All status information for an output buffer is logically ORed together
and saved to the *errors pointer, allowing checks to be made for flags being set or
overflow.

Parameters:
Input Pointer to 16-bit input buffer, containing interleaved samples

from all active channels. This buffer must be aligned to a 32-bit
boundary.

Bitmask A 16-bit mask used to limit the data. For 16-bits use 0xffff; 14-
bits use 0x3fff; 12 bits use 0x0fff

Output Pointer to first output buffer. Subsequent output buffers are
located immediately after this one. This buffer must be aligned
to a 32-bit boundary. Do not use the input buffer as the output as
this will cause data loss.

Samples_per_channel Number of samples per channel in the input buffer.

Errors Pointer to an array of 16 bit error values, one array entry per
channel. This array must be aligned to a 32 bit boundary**.
Some I/O modules include additional info in flags along with the
sample data. This is ORed together for each channel and stored
here.

13 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

DAC Packers

Data Format Conversion
There are two sets of packers, covering 16-bit and 32-bit data sinks. The 32-bit
packers assume that a single sample is contained in one half of a 32-bit word, as in
the case with the 16-bit DACs; while the 16-bit packers assume that the sample is
contained within a 16-bit word. In either case, the library can pack different
wordlengths – for example, the 16-bit packers can be used with 12 or 14-bit DACs.

The packers are split into two groups. The first group pack the data directly,
performing no format conversion. The second group converts the data to “offset
binary” from “2’s complement”. Offset Binary is a common format used on
many ADCs & DACs.

Data Buffer Formats
Input data is in linear addressed buffers of 16-bit samples (short data). It is
assumed that the input buffers are consecutive – see example.

The output buffer must be large enough to receive the results – note that for some
packers, the output data is 32-bit – hence the output buffer will be twice the size
of the input buffer.

Assumptions & Notes
1. All code is interruptible to ensure maximum performance in HERON

systems.

2. In all cases it is assumed that each input buffer will contain at least 2
samples, and that each output buffer will contain at least 8 samples.

3. It is also a condition that all buffers should contain an even number of
samples and be aligned to 32-bit boundaries. This allows the library to treat
data as 32-bit values, allowing faster data transfers.

14 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

HEL_Pack16bitYchan
Syntax:

#include “HEL_Unpack.h”

…

HEL_Pack16bit1chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_Pack16bit2chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_Pack16bit3chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_Pack16bit4chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_Pack16bit5chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_Pack16bit6chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_Pack16bit7chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_Pack16bit8chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

Description:
This group of packers take multiple buffers of short data and combine to a single
output buffer.

The output buffer will be compatible with Hunt Engineering 14-bit or 12-bit DACs
(right justified, packed in 16-bit words; top bits used as control).

Data is limited by ANDing with bitmask before use. This can be used to ensure
that short data is in-range for a 12-bit or 14-bit DAC. Data is ORed with the
masks[] array before output. This array contains a mask per input buffer, so can be
used to set control bits or channel address bits.

Parameters:
Input Pointer to first input buffer. Subsequent input buffers are

located immediately after this one. This buffer must be
aligned to a 32-bit boundary.

Masks[] Array of 16-bit OR masks, one per channel. Used to set
control bits.

Bitmask 16-bit mask ANDed with data before output – use 0x3fff for
14-bit DACs, 0x0fff for 12-bit DACs.

Output Pointer to 16-bit output buffer. This buffer must be aligned to
a 32-bit boundary. Do not use the input buffer as the output as
this will cause data loss.

Samples_per_channel Number of samples per channel in the input buffer.

15 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

HEL_Pack32bitYchan
Syntax:

#include “HEL_Unpack.h”

…

HEL_Pack16bit1chan (short *input, unsigned int *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_Pack16bit2chan (short *input, unsigned int *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_Pack16bit3chan (short *input, unsigned int *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_Pack16bit4chan (short *input, unsigned int *masks, unsigned short
bitmask, short *output, int samples_per_channel);

Description:
This group of packers take multiple buffers of short data and combine to a single
32-bit output buffer for 16-bit DACs.

The output buffer will be compatible with Hunt Engineering 16-bit DACs (right
justified, packed in 32-bit words; top bits used as control).

Data is limited by ANDing with bitmask before use. This can be used to ensure
that short data is in-range for a 16-bit DAC. Data is ORed with the masks[] array
before output. This array contains a mask per input buffer, so can be used to set
control bits or channel address bits.

Parameters:
Input Pointer to first input buffer. Subsequent input buffers are

located immediately after this one. This buffer must be
aligned to a 32-bit boundary.

Masks[] Array of 32-bit OR masks, one per channel. Used to set
control bits.

Bitmask 16-bit mask ANDed with data before output – use 0x3fff for
14-bit DACs, 0x0fff for 12-bit DACs.

Output Pointer to 32-bit output buffer. Do not use the input buffer as
the output as this will cause data loss.

Samples_per_channel Number of samples per channel in the input buffer.

16 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

HEL_PackBin16bitYchan
Syntax:

#include “HEL_Unpack.h”

…

HEL_PackBin16bit1chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin16bit2chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin16bit3chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin16bit4chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin16bit5chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin16bit6chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin16bit7chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin16bit8chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

Description:
This group of packers take multiple buffers of short data and combine to a single
output buffer, converting to offset binary in the process.

The output buffer will be compatible with Hunt Engineering 14-bit or 12-bit DACs
(right justified, packed in 16-bit words; top bits used as control).

Data is limited by ANDing with bitmask before use. This can be used to ensure
that short data is in-range for a 12-bit or 14-bit DAC. Data is ORed with the
masks[] array before output. This array contains a mask per input buffer, so can be
used to set control bits or channel address bits.

Parameters:
Input Pointer to first input buffer. Subsequent input buffers are

located immediately after this one. This buffer must be
aligned to a 32-bit boundary.

Masks[] Array of 16-bit OR masks, one per channel. Used to set
control bits.

Bitmask 16-bit mask ANDed with data before output – use 0x3fff for
14-bit DACs, 0x0fff for 12-bit DACs.

Output Pointer to 16-bit output buffer. This buffer must be aligned to
a 32-bit boundary. Do not use the input buffer as the output as
this will cause data loss.

Samples_per_channel Number of samples per channel in the input buffer.

17 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

HEL_PackBin32bitYchan
Syntax:

#include “HEL_Unpack.h”

…

HEL_PackBin16bit1chan (short *input, unsigned int *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin16bit2chan (short *input, unsigned int *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin16bit3chan (short *input, unsigned int *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin16bit4chan (short *input, unsigned int *masks, unsigned short
bitmask, short *output, int samples_per_channel);

Description:
This group of packers take multiple buffers of short data and combine to a single
32-bit output buffer for 16-bit DACs. It also converts the data to offset binary.

The output buffer will be compatible with Hunt Engineering 16-bit DACs (right
justified, packed in 32-bit words; top bits used as control).

Data is limited by ANDing with bitmask before use. This can be used to ensure
that short data is in-range for a 16-bit DAC. Data is ORed with the masks[] array
before output. This array contains a mask per input buffer, so can be used to set
control bits or channel address bits.

Parameters:
Input Pointer to first input buffer. Subsequent input buffers are

located immediately after this one. This buffer must be
aligned to a 32-bit boundary.

Masks[] Array of 32-bit OR masks, one per channel. Used to set
control bits.

Bitmask 16-bit mask ANDed with data before output – use 0x3fff for
14-bit DACs, 0x0fff for 12-bit DACs.

Output Pointer to 32-bit output buffer. Do not use the input buffer as
the output as this will cause data loss.

Samples_per_channel Number of samples per channel in the input buffer.

18 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

HEL_PackBin2h16bitYchan
Syntax:

#include “HEL_Unpack.h”

…

HEL_PackBin2h16bit1chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin2h16bit2chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin2h16bit3chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin2h16bit4chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin2h16bit5chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin2h16bit6chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin2h16bit7chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

HEL_PackBin2h16bit8chan (short *input, unsigned short *masks, unsigned short
bitmask, short *output, int samples_per_channel);

Description:
This group of packers take multiple buffers of short data and combine to a single
output buffer.

The output buffer will be compatible with Hunt Engineering the 14-bit GD14 data
format (right justified, packed in 16-bit words; top bit used as control).

Data is limited by ANDing with bitmask before use. This can be used to ensure
that short data is in-range for 14-bit GD14 compatible data. Data is ORed with the
masks[] array before output. This array contains a mask per input buffer, so can be
used to set the GD14 data’s control bit.

Parameters:
Input Pointer to first input buffer. Subsequent input buffers are

located immediately after this one. This buffer must be
aligned to a 32-bit boundary.

Masks[] Array of 16-bit OR masks, one per channel. Used to set
control bits.

Bitmask 16-bit mask ANDed with data before output – use 0x3fff for
the 14-bit GD14.

Output Pointer to 16-bit output buffer. This buffer must be aligned to
a 32-bit boundary. Do not use the input buffer as the output as
this will cause data loss.

Samples_per_channel Number of samples per channel in the input buffer.

19 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

Performance Notes

Each of the packers / unpackers is implemented in optimized linear assembly
code. Best results will be achieved using the unpackers on data in on-chip RAM,
ideally in different memory blocks.

It is impossible to code a packer/unpacker so that it does not cause memory bank
contention. We have tried to reduce this as far as possible, but it is the most
significant factor influencing performance. Wherever possible, arrange for the
input and output buffers to be in separate memory banks.

The following figurs were generated using a TMS320C6201, with data in THE
SAME BANK of on-chip memory. These should therefore be pessimistic
numbers. Note N is the number of samples per channel.

HEL_Unpack16bitYchan Test

 1 Channel: 36 + N * 1.0
 2 Channel: 52 + N * 0.8
 3 Channel: 40 + N * 1.0
 4 Channel: 52 + N * 0.9
 8 Channel: 76 + N * 0.8
 12 Channel: 72 + N * 1.3
 16 Channel: 76 + N * 1.3

HEL_UnPack32bitYchan Test

 1 Channel: 28 + N * 1.0
 2 Channel: 24 + N * 1.0
 4 Channel: 52 + N * 1.0
 8 Channel: 52 + N * 1.0

HEL_UnpackBin16bitYchan Test

 1 Channel: 44 + N * 0.8
 2 Channel: 44 + N * 0.9
 3 Channel: 44 + N * 1.0
 4 Channel: 52 + N * 0.8
 8 Channel: 72 + N * 1.0
 12 Channel: 68 + N * 1.2
 16 Channel: 76 + N * 1.2

HEL_UnPackBin32bitYchan Test

 4 Channel: 20 + N * 1.0
 8 Channel: 56 + N * 1.0

20 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

HEL_Pack16bitYchan Test

 1 Channel: 44 + N * 0.6
 2 Channel: 52 + N * 0.9
 3 Channel: 56 + N * 1.0
 4 Channel: 68 + N * 0.8
 5 Channel: 72 + N * 0.8
 6 Channel: 88 + N * 0.7
 7 Channel: 104 + N * 0.8
 8 Channel: 112 + N * 0.8

HEL_Pack32bitYchan Test

 1 Channel: 44 + N * 1.1
 2 Channel: 40 + N * 1.0
 3 Channel: 48 + N * 1.3
 4 Channel: 60 + N * 1.4

HEL_PackBin16bitYchan Test

 1 Channel: 60 + N * 0.5
 2 Channel: 72 + N * 0.8
 3 Channel: 68 + N * 1.1
 4 Channel: 24 + N * 1.3
 5 Channel: 84 + N * 0.8
 6 Channel: 88 + N * 0.8
 7 Channel: 108 + N * 0.8
 8 Channel: 120 + N * 0.8

HEL_PackBin32bitYchan Test

 1 Channel: 60 + N * 1.3
 2 Channel: 60 + N * 1.0
 3 Channel: 52 + N * 1.3
 4 Channel: 140 + N * 1.3

HEL_UnpackSe16bitYchan Test

 1 Channel: 40 + N * 1.1
 2 Channel: 56 + N * 1.1

21 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

Source Code

The source of the library functions is provided on the HUNT ENGINEERING CD in the
src directory. Simply follow “Getting Started” from the CD menu and select “libraries”.

This source can be copied onto your hard drive, and modified or re-built as you wish.

The library is implemented as a set of linear assembly files. To build it, run the batch file
“Build_Obj_Lib.bat”.

This batch file sets the assembler options and builds the library. Note that the assembly
process will give some warnings relating to large constants – these are normal and not a
concern.

The Supplied Library is built for “Small” memory model. This is suitable for most
applications. Please refer to the HUNT ENGINEERING technical note “Choosing a
memory model” for more details. If it is necessary to have a different memory model
version of the library it can be built using the sources supplied.

22 HUNT ENGINEERING HEL_UnpackLib USER MANUAL

Technical Support

Technical support for HUNT ENGINEERING products should first be obtained from the
comprehensive Support section www.hunteng.co.uk/support/index.htm on the HUNT
ENGINEERING web site. This includes FAQs, latest product, software and
documentation updates etc. Or contact your local supplier - if you are unsure of details
please refer to www.hunteng.co.uk for the list of current re-sellers.

HUNT ENGINEERING technical support can be contacted by emailing
support@hunteng.demon.co.uk, calling the direct support telephone number +44 (0)1278
760775, or by calling the general number +44 (0)1278 760188 and choosing the technical
support option.
If you are in North America, South America or Canada, contact our strategic partner
Traquair Data Systems at www.traquair.com/company/support.html for support
information and contact details.

http://www.hunteng.co.uk/support/index.htm
www.hunteng.co.uk
mailto:support@hunteng.demon.co.uk
www.traquair.com/company/support.html

	Library History
	Introduction
	Where do I find the library?
	Functions
	ADC Unpackers
	Data Format Conversion
	Data Buffer Formats
	Assumptions & Notes
	Alignment of arrays
	HEL_Unpack16bitYchan
	HEL_Unpack32bitYchan
	HEL_UnpackBin16bitYchan
	HEL_UnpackBin32bitYchan
	HEL_UnpackSe16bitYchan

	DAC Packers
	Data Format Conversion
	Data Buffer Formats
	Assumptions & Notes
	HEL_Pack16bitYchan
	HEL_Pack32bitYchan
	HEL_PackBin16bitYchan
	HEL_PackBin32bitYchan
	HEL_PackBin2h16bitYchan

	Performance Notes
	Source Code
	Technical Support

