

HUNT ENGINEERING
Chestnut Court, Burton Row,

Brent Knoll, Somerset, TA9 4BP, UK
Tel: (+44) (0)1278 760188,
Fax: (+44) (0)1278 760199,

Email: sales@hunteng.co.uk
www.hunteng.co.uk
www.hunt-dsp.com

HUNT ENGINEERING

 Imaging with FPGA
Demo/Framework

An Example of capturing images with HERON-FPGA modules with
standard IP, image processing on the FPGA using the Hunt

Engineering Imaging VHDL and displaying the results on the host
PC’s graphics display. Originally written for Windows 98, but

should work on any 32-bit Windows system.

Software Version 1.0
Document Rev B

P.Warnes 12/12/03

2 HUNT ENGINEERING FPGA imaging demo

TABLE OF CONTENTS
INTRODUCTION.. 3

LIMITATIONS OF DISPLAY ... 4

INSIDE THE DEMO... 5
OVERVIEW .. 5
USE OF APIS ETC... 5
DSP HARDWARE... 5
PC HARDWARE ... 6
CONFIGURATION FILE.. 6
FPGA CODE.. 6
HOST CODE ... 7

User Interface / Application Thread.. 7
WndProc .. 8
FPGA Thread .. 8

HOW TO USE THE DEMO... 10

RESIZING THE IMAGE.. 12

FILE FUNCTIONS & LOCATIONS... 13
HOST CODE DIRECTORY.. 13

TECHNICAL SUPPORT.. 14

3 HUNT ENGINEERING FPGA imaging demo

Introduction

Modern FPGAs can be used to build powerful image processing systems. Many standard
imaging functions are easily programmed into an FPGA where their performance can easily
outstrip the performance of more conventional processors.

HUNT ENGINEERING have produced some VHDL Image Processing Source Modules
that perform many of these standard functions. This demo/framework is provided to a)
demonstrate those VHDL modules and b) act as a starting point for customers that want to
develop image processing applications using HERON systems.

There is an FPGA design for the HERON-FPGA5 that adds the imaging modules to the
standard IP for a Camera Link camera. This is combined with a PC based windows
program that controls that FPGA program and displays the results in a Windows window.
Both of these items are provided as source code allowing them to be used as a starting point
for your own development.

In addition there are bitstreams provided for other FPGA module types to allow the
Imaging IP to be demonstrated on those modules and with both Camera Link and RS422
cameras.

4 HUNT ENGINEERING FPGA imaging demo

Limitations of display

In many imaging systems there is a requirement for display. Sometimes this is a “hard”
requirement, where the display needs guaranteed update rates, or high resolution / high
frame rates; however in many systems, the display is not crucial to the system’s operation.

Examples of such systems include a display for focusing or aligning cameras, a confidence
checking display, or a monitor to display processed results. In such cases, it is possible to
use the host PC for display.

This is an example of using HUNT ENGINEERING imaging boards in this way. It
captures video, performs some processing, then transfers the resulting video to the PC for
display on the PC’s monitor. This is done entirely using Windows function calls, so should
be portable across all 32-bit Windows systems.

The example also demonstrates use of the HUNT ENGINEERING VHDL Image
Processing modules to perform basic logical, arithmetic and filter operations. It can self-
run, or be set to each task.

The software has been written using the HUNT ENGINEERING Host API software.
This allows it to be easily ported from one platform to another.

Performance of the system depends very much on the bus bandwidth of the PC being used
and the processor loading of that PC.

Notes:

1. The demo uses an image size of 384x384, and will work with any camera that has at
least that number of pixels and lines. It is possible to re-compile to use a different
image size, and it will automatically re-size the processing and display as long as the
camera provides at least the image size that it has been compiled for.

2. The demo uses 8-bit monochrome video. The most efficient display settings for the
application are 24-bit or 32-bit colour – this reduces colour space conversion to
three copy operations rather than colour search / match operations. Frame rate
may drop if you use 16-bit or 8-bit mode.

5 HUNT ENGINEERING FPGA imaging demo

Inside the Demo

Overview

The demo as-is will work with a HUNT ENGINEERING system that is based on an
HEPC9, with one of the supported FPGA modules in any slot. The demo will program the
FPGA module with a special “frame-grabber and demo” bit stream. These bitstreams
assume that the camera is connected as described in the corresponding standard frame-
grabber IP.

The demo should run on any PC with any 32-bit Microsoft Windows installed on it;
however, it will operate better on faster machines with accelerated graphics cards.

Camera’s supported are Camera Link and RS422 area-scan camera’s, with at least 384 x 384
visible pixels. The pixel size should be 14 bits or less. The demo detects if the camera is
providing 8, 10, 12 or 14 pixels and takes only the top 8 bits for the demo.

The demo consists of a Windows host program, and bit-streams for the various FPGA
modules. The bit-streams used are based upon the standard Camera Link IP and RS422
Camera IP on the HUNT ENGINEERING CD.

The same host program can be used with all of the combinations of camera type and FPGA
module type by selecting the bitstream to be loaded onto the module. The names of the
bitstreams supplied indicate the module type and camera type.

Use of APIs etc

The demo is based around HUNT ENGINEERING’s standard APIs and utilities. These
give it great portability, allowing us to switch easily from one hardware platform to another.
We discuss them a lot in the following outline; here is an introduction to their function.

Host API is the standard software interface to any Hunt Engineering board from a host
PC. It provides a simple mechanism to control the board and transfer blocks of data
between the PC and the modules in the system. In this application it is used to pass images
from the FPGA to the host.

Hardware Interface Layer This VHDL is provided for the FPGA modules to correctly
interface to external hardware like the HERON FIFOs.

Imaging VHDL This is like a library of image processing primitives, written in
VHDL. It is used to provide the image processing functions for the demo.

DSP Hardware
The demo has been tested on a variety of hardware, as follows:

• Various Camera-link digital cameras from Pulnix and Jai

• Pulnix TM 300 RS422 digital camera

• HERON-FPGA3,4 and 5 modules

• HEPC9 PCI carrier board

6 HUNT ENGINEERING FPGA imaging demo

Full use of the APIs provided with HUNT ENGINEERING systems allows easy
portability to other platforms; however bear in mind that other cameras may require
different configuration, while different HERON-PFGA modules would require their own
Hardware Interface Layer VHDL.

PC Hardware
The demo should be compatible with any 32-bit Windows system. Obviously, it uses
considerable bus bandwidth for transferring video, and performs rapid bit-blits to place the
video on the screen. Faster PC systems will perform this better, but the demo should still
operate on older systems with no graphics acceleration and slower processors.

This raises a design issue we must be aware of – in many circumstances the DSP and
framegrabber will be able to supply images far faster than the PC can display them. This is
taken into account in the host software by checking for the sync positions in the data, and
discarding incomplete frames.

Configuration File
There’s a text file included in the demo that holds some parameters that are used by the
demo to configure the camera used. This allows you to use the demo for some variety of
Camera Link and RS422 cameras, and also gives you some degree of control over what the
demo does.

The file is called ‘camera.dat’. In here you can find the following parameters.
cam_control = 0xf

This is a parameter that represents the camera control value.
cam_use_dval = 0

Different Camera Link and RS422 camera’s may use slightly different protocols. One of
them is whether the ‘dval’ signal is used or not. With this parameter you can change that
setting.
cam_polarity = 1

Different Camera Link and RS422 camera’s may use a different ‘polarity’. In one case, a
logic 1 may mean ‘active’, while for another camera a logic one may mean ‘not-active’. With
this parameter, you can indicate the polarity of the signals of the camera used.

FPGA Code

The FPGA code performs the following tasks:

• Interface to the Camera

• Detect some parameters about the image

• Apply some selection of the image information to process

• Process the images

• Send the processed data to the Host program for display.

The first elements of the FPGA design are directly taken from the standard camera
interface IP provided on the HUNT ENGINEERING CD. The Auto-ROI, ROI, Frame

7 HUNT ENGINEERING FPGA imaging demo

control etc is directly used from those IPs.

The Image processing Source modules also provided on the HUNT ENGINEERING CD
are added to that standard IP, and the incoming image data applied to all of them at the
same time. This allows the data for display on the PC to be selected by using a multiplexor
that feeds the HERON FIFO data with the output of the selected Imaging function. There
is a small FIFO implemented on the output of the multiplexor to help de-couple the
incoming frames from the bursty transfers of the PCI bus.

The FPGA project supplied is for a HERON-FPGA5 module. This module has memory
that is external to the FPGA, which allows some inter-frame processing to be made. For the
purposes of the demo the way that this is used, is that there is a function to “capture” a
frame into the SDRAM, which is then used as the “reference” for the inter-frame functions.
The Host program has a check box where you can select that you have SDRAM on your
module. This will enable the inter-frame modes in the demo.

The bitstreams for the module types that do not have external memory cannot include these
functions, so they cannot be demonstrated in the demo. The SDRAM modes should not be
selected for these modules.

Host Code

The host code is a Windows application written and compiled using Microsoft Visual C++.
Understanding it requires some knowledge of the Windows operating system.

The application is split into three main sections:

1. User Interface / application code, which deals with the user interface, updating the
display, moving the screen and so forth;

2. WndPROC, the window message handler. This function is registered as the handler
for all messages for our display window.

3. FPGA threads, which load the FPGA modules, controls the output multiplexor
from the FPGA and performs all data transfers from the board.

The application is multi-threaded. The main thread performs the User Interface code, while
the second thread handles the DSP board. Splitting the application in this way greatly
improves the usability of the system; user interface options (eg moving the window,
selecting a menu, closing the application) can be performed while the application is reading
the FPGA data.

Note WndPROC is called by the Windows operating system itself – there are no calls to
this function in the code.

User Interface / Application Thread
This is the main thread of the application. It performs the following tasks:

1. Open a window for image display

2. Create two bitmaps and initialise with a test pattern

3. Start the FPGA code thread

4. Start the timer

5. Process Windows system messages

8 HUNT ENGINEERING FPGA imaging demo

Once these tasks are performed, this thread simply polls the Windows message queue and
despatches messages. In the main, these are either handled by the system or by the
WndProc function.

Key messages arrive from the timer and from the user. Timer messages are used to switch
the FPGA multiplexor to its next operating mode, while the user can request a switch
manually.

WndProc
This function is called to handle all messages to our display window, from whatever source.
Note that we don’t call this function ourselves – it is registered as the handler for the
window, and it is called by Windows directly.

There are three messages handled here that are worth noting:

WM_PAINT This is the standard “Window Paint” message. Windows will send this
message whenever the window needs an update – perhaps because it has
been moved, or more of the window has been displayed; or part of the
window has become valid.

 This paints the window. Display is performed using a Windows BitBLT
call – this copies the image directly to the screen. StretchBLT would
perform scaling – a call to StretchBLT is in the code, commented out,
should you wish to try this.

 Note that to use StretchBLT you will need to change the window class –
it is currently defined as non-resizable.

FPGA_IMAGE This message is sent by the FPGA code thread. It indicates that a new
image is available for display. The message causes the display window
to be invalidated, causing a WM_PAINT event (See above).

FPGA_STATUS This sets a flag for WM_PAINT, indicating that the status text has been
changed. It also invalidates the screen. This causes WM_PAINT to
redraw the status bar.

FPGA Thread
The host’s interface code for accessing the FPGA is contained in a separate thread, started
by the main application. This is not strictly necessary – it would have been possible to write
the application with a single thread. However, multi-threading makes the code simpler and
more robust for the user.

The code uses the HUNT ENGINEERING Hrn_fpga and Heartconf programs for
starting the system. This performs all booting operations, such as resetting the board,
loading the code and starting execution.

Once loaded, the host opens an API session for the board. This allows us to create our
own data passing mechanism across the interface, allowing us to send commands to the
board and receive images back.

Once booted, the code continuously reads images from the board. When a complete image
is read, the FPGA thread checks for the correct alignment of the frmaesync, and if it is
correct it sends message FPGA_IMAGE to the display window – this forces an update.
The code also initiates a read of the next image.

If the Framesync is not at the correct location, this is because the Host has not responded

9 HUNT ENGINEERING FPGA imaging demo

to the PCI interface quickly enough and the FIFO in the FPGA design has overflowed.
Windows is not a real-time operating system and makes no claims to respond in a given
time. In fact statements can be found to the effect that the interrupt response time can
exceed 1/10th of a second. To recover from this situation the FPGA thread searches for the
framesync and adjusts the length of the next frame to be read. Thus the demo should
recover from the effects of Windows latencies exceeding the desired length.

Images for display are double-buffered. This ensures that we always have one good image
ready for display, while a second image is being received from the FPGA. Thus, should the
display need updating for any reason other than a new image being available, the old image
can be redrawn. This covers the various screen updates that Windows can throw in – for
our window being moved, or for a screensaver for example. It also allows us to prevent the
display of any images that are corrupted by the windows response issues. These issues
simply cause some frames to be lost, but the previous image continues to be displayed so it
appears as a small stutter only.

10 HUNT ENGINEERING FPGA imaging demo

How to use the demo

There is an exe file supplied on the HUNT ENGINEERING CD that is generated from
the MSVCC project supplied. You can run it from the CD or copy it to your hard drive.

If you copy it to your hard drive, you need to copy the whole directory structure because
the program requires some other files. The network and camera.dat files are examples of
this, but it also looks for bitstream files in a directory that is ../bitstreams.

To run the demo you need to double click on the file viewer.exe and you will see the
window below :-

As the instructions say, you need first to select a bitstream using the Setup menu. You need
to choose a bitstream that matches your module type and camera type.

The /bitstream directory contains two sub-directories, one for Camera Link camera
bitstreams and one for RS422 bitstreams. Inside each of these directories are directories for
each FPGA module type supported.

For the Camera Link directories, there are two options for each particular modular type.
For cameras with Pixel Clocks of 24MHz or below, the file that ends ‘_lf’ (low frequency)
must be used. For cameras with Pixels of 25MHz or above, the file that ends ‘_hf’ (high
frequency) must be used.

Next you need to set the module slot where your module is fitted, using the Setup-> Slot

11 HUNT ENGINEERING FPGA imaging demo

menu.

You can select the SDRAM and Self Running options now or later – as you prefer.

Next choose Start from the Run menu. The program will load the bitstream into the FPGA,
and set the FIFO connections between the module and the PCI interface. Then images will
be captured and displayed without any processing.

You are now free to select the various image processing functions from the other menus.
The functions under the menu Variable Coefficient Functions will be greyed out unless you
select the SDRAM option under Setup, and will not work unless you have a module that
provides SDRAM.

If you select Self Running the functions will cycle around in a repeating demo like you
would see at a tradeshow.

12 HUNT ENGINEERING FPGA imaging demo

Resizing the image

The file image_defs.h defines the image size used in the demo to be 384pixels by 384 lines.
It will select that size of image from any camera image that is larger than that size.

If you change the definitions in this file and re-compile the host application, the host
application and image acquisition will work with the new size – as long as the camera is
providing an image at least as large as you select.

However for efficiency of FPGA resources, the line length is determined at synthesis time
of your FPGA design. If you want to use the demo with a different size image you will need
to change the definition of LINE_LENGTH in the user_ap1.vhd file and re-create the
bitstream.

13 HUNT ENGINEERING FPGA imaging demo

File Functions & Locations

The example is supplied as a Microsoft Visual C++ project. This contains the following
directory structure:

Directory Description

.\ Root directory for the project; contains project management files.
Also contains documentation for this example.

.\host_code PC code for controlling the system and displaying the images.
Details of the files are given below.

.\bitstreams The standard bitstreams supplied for the various combinations of
module and camera type..

.\fpga5 The FPGA project for an HERON-FPGA5 module. You can
use the user_ap level and below in a project for another module
type

Host Code Directory
File Description

Viewer.exe Main PC application.

Img_Display.cpp Source code for demo. Note that although this is a .cpp file,
it is almost straight C.

Img_Display.rc Resource file for the demo. This file defines the menus that
appear on the application’s menu bar.

Resource.h Resource header associated with the resource file.

Image_defs.h Definition of the image size

Global.h Global definitions for HSB addresses etc

Msg_defs.h Definitions of values used in HSB messages

Demo_defs.h definitions of the demo text strings

14 HUNT ENGINEERING FPGA imaging demo

Technical Support

Technical support for HUNT ENGINEERING products should first be obtained from the
comprehensive Support section http://www.hunteng.co.uk/support/index.htm on the
HUNT ENGINEERING web site. This includes FAQs, latest product, software and
documentation updates etc. Or contact your local supplier - if you are unsure of details
please refer to http://www.hunteng.co.uk for the list of current re-sellers.

HUNT ENGINEERING technical support can be contacted by emailing
support@hunteng.co.uk, calling the direct support telephone number +44 (0)1278 760775,
or by calling the general number +44 (0)1278 760188 and choosing the technical support
option.

http://www.hunteng.co.uk/support/index.htm
www.hunteng.co.uk
mailto:support@hunteng.co.uk

	Introduction
	Limitations of display
	Inside the Demo
	Overview
	Use of APIs etc
	DSP Hardware
	PC Hardware
	Configuration File
	FPGA Code
	Host Code
	User Interface / Application Thread
	WndProc
	FPGA Thread

	How to use the demo
	Resizing the image
	File Functions & Locations
	Host Code Directory

	Technical Support

