HUNT ENGINEERING -
Chestnut Court, Burton Row, N D
Brent Knoll, Somerset, TA9 4BP, UK tre':f'sl’f’?f’*
Tdl: (+44) (0)1278 760188, ' o
Fax: (+44) (0)1278 760199, S
Email: sales@hunteng.co.uk ' DSP
www.hunteng.co.uk e RO
www.hunt-dsp.com

Using HERON-API to access HERON FIFOs from a C6000 module. N

Rev 1.0 P.Warnes 22-7-03

The main function of HERON-API is to allow your C6000 program to access the HERON FIFOs that
are used to interface with other nodes in your system.

Although there are many examples for ussing HERON-API and the different models it provides, users
have requested that there is this tutoria to introduce the concepts.

The tutorial starts from the C code provided, that uses a simple waitio model, and makes changes to
that to demonstrate some of the issues that should be understood.

This tutorial requires that you have a HEART based module carrier board like the HEPCO.

History
Rev 1.0 First written

AN /

HUNT ENGINEERING isatrading style of HUNT ENGINEERING (U.K.) Ltd, Co Reg No 3333633
Directors P.Warnes& N.J.Warnes. Reg'd office 34 & 38 North St, Bridgwater, Somerset TA6 3YD. VAT Reg'd No GB 515 8449 31

Code Composer Studio.

Code Composer Studio is the development tool for C6000 programs, and you should have already
followed the Code Composer Studio tutorials provided by Tl, and the “ Starting your development”
tutorial provided by HUNT ENGINEERING.

DSP/BIOS

DSP/BIOS is the multi-threading environment provided as part of the Code Composer devel opment
Environment. It also provides services for configuring processor features such as hardware
interrupts and timers. Asit isincluded in Code Composer Studio, along with the Compile tools for
the C6000, all users of HERON hardware will own it.

The program for each processor will use DSP/BIOS to configure the multi-tasking etc for that DSP.
Simply program and use CCS to compile the application for each DSP separately. This resultsin a
single .out file that contains all of the interrupt service routines etc for that processor.

Each processor can accessit’s end of a HERON FIFO independently from the other end of the FIFO
that will be accessed by another node.

HERON-API

HERON-API is the communications library that HUNT ENGINEERING provides to perform the
inter-processor and processor to I/O communications. Its purpose is to prevent the user from
needing to intimately understand the communications mechanism, by providing an optimised way to
use the limited DMA resources of the C6000 in a choice of ways.

It also serves the purpose of providing a common software interface to the various C6000 HERON
modules that HUNT ENGINEERING produce or plan to produce. The hardware of those modules
will be different but the HERON-API interface will not.

The main part of HERON-API is to communicate via the HERON FIFOs. For this it provides an
asynchronous I/0O model, protected by an open and close mechanism. To use a FIFO it must first be
“opened” for read or write using HeronOpenFifo, and a read or a write can be started using
HeronRead or HeronWrite. This just schedules that 1/0 to take place, using the DMA resources of
the processor. Meanwhile the processor coreis free to execute other tasks such as processing the last
buffer of data.

Fifo example

Copy the source file fifo_example.c from the CD (you can click on the files link from the CD menu,
or look for the directory heron_api_examples\fifo_example.

Using the techniques that you have already learnt in the “starting your development” tutorial, make
anew HERON-API project in Code Composer Studio that uses this sourcefile.

If you have made the project properly using the CCS plug in, the line
#include "heronx.h"
will be set for the modul e type that you have.

This is how the correct HERON-API library is included in your project, e.g. if you have a heron4
thisline will be

#include "heron4.n"

If you look in the source code you will find call to the open function and the write, read and waitio
functions.

The example uses the #defined variables INFIFONO and OUTFIFONO to define which fifo
numbers will be used.

The example will send data to an output FIFO, and read the results from an input FIFO before
checking them. This expects there to be a connection between those FIFOs so that the same data that
issent isreceived. To make this connection we use the HEART communications system.

Y ou should have already viewed the movie presentation about using HEART. If you have not done
so - then you should do that now.

From within Code Composer open the Reset plug in by following

iler GEL DOption | Toolz PBC DSP/BIOS Window Help
[ata Coreverter Suppart F -a] “'ﬁc-g [}aa | % h!) ,;E _,,E | ME

CEO00 Sirnulatar Analysiz

CEO0D Ernulator Analysis k %

Linker Configuration

Fart Connect

Fin Connect

Command Window
Symbal Browser
HUMT EMGIMEERING
Algarithrn Standard
BTN

Advanced Event Triggering

#define INFIFOWO 0 % the FIFO numher sou o

Then you will seethereset plugin
1 ——

g
Toreset all processors in the spstem,
prezs the Reset System button.

Bezet Syztem Help

To alzo program HEART after the
rezet, zelect a nebwork file [right-chclk,
thiz zcreen, select Property Page...]

Where you can right click to see the properties page :-

Heszetzps Control Properties |

General |

—'what to do after Feset
™ Let all processors run free after the reset
™ Halt all proceszars after the reset
™ Halt all prozessors, then run them all
™ Halt all processors, then reload them all
™ Halt all proceszars, reload them, then run
% Halt all processars, reload them, rum ko main

¥ Frogram HEART. Use the netwark file below:

I Eru:uwsel ﬂ

¥ Zap HEART before programming. W erbose

[Feset boards uzing BD information in thiz network file (zupport purposes only]

[Trace [for support purpozes only)

(] I Cancel Apply

Notice that the “Program HEART” should be ticked. We need to generate a network file where we can
define the FIFO connection that we need. If you have the filename box empty like in the picture you can
click on the edit button. You will see:-

Metwork file

Mo network, file specified.
Do pou want bo create a new netwark, file?

Mo | Cancel |

If you click yes, you will be asked to enter a path and file name to be used for the network file. Choose a
location and you will be shown a template network file. We need to edit this file to provide the FIFO
connection for our example.

There should be aline

BD API hep9a00

Which selects that we are using an HEPC9 with the switch set to O.

We need to define the node that is our C6000 module. There is one commented out
#c6 0 dsp0 ROOT 0x01 filename

We need to uncomment this line, and to set the correct slot number to match our system. For example if
the C6000 module isfitted to module slot 2 in our system then we need to have :-

c6 0 dspO0 ROOT 0x02 filename

The c6 is akeyword and must not be edited, the O is the board entry in our list of boards—in this case only
one board so 0 is the only option. The name dsp0 is a user friendly name for the node — you can choose
whatever you prefer. The 0x02 is the HERON-ID which should be a combination of the board number (in
this case 0) and the slot number. The filename is only relevant if we use the Server/Loader. For full
information about the network file please refer to the document “Network File Syntax” found under user
manuals on the HUNT ENGINEERING CD.

Now we need to make a FIFO connection. To do this we edit one of the HEART linesto be :-

heart dspO0O 1 dsp0 O 1

which connects the output FIFO number 1 to the input FIFO 0, with one timeslot. Again refer to the
documentation for details.

Savethisfile.

Notice that the reset plug in is able to re-load the processor, but not to load it in the first place. So now we
should load the processor.

To do this choose File->Load Program from the Code Composer menus, and then select the file
fifo_example.out from the debug directory..

Now you can use the Reset System button on the reset plug in. Using the option selected in the picture
above this will reset the C6000 module hardware and the HEART FIFOs, will then connect the FIFO
connections according to our network file, and re-load the DSP program. Then your source file will be
opened at the main function.

Select run and you should see

Hello from HEROM-API fifo dema.
completed loop
completed loop
completed loop
completed loop
completed loop
completed loop
completed loop
completed loop

4] 4] HLIII‘\ Buid } Stdout f

e [R Y O A Y L T e e

If you do not then the FIFO connection made in your network file does not match the #defines in the
source code for your C6000 program. It is very important that these setting match.

Asafurther exercise try increasing the buffer size to 1024. This doesn’t work — can you work out why?

Look at the source code. In fact you can halt the processor and you will probably find that the processor is
stuck in the waitio function.

The code currently makes the following sequence:-
Write

Wait for write to complete

Read

Wait for read to complete

But we are now sending more data than fits into the HERON FIFOs, so the write cannot complete. Hence
we get stuck at the “Wait for write to complete”’. This shows how it isimportant to use the waitio function
only when we are certain to compl ete.

We can make our example work again, by moving the line that starts the read to be immediately after the
line that starts the write, i.e.

wstatus = HeronWrite(outfifo,pattern,BUFFER_SIZE);
if (wstatus!=HERON_IO_IN_PROGRESS)

{

printf("error from write\n");

exit(0);

}
[* now start to read the data back from the FIFO */
rstatus = HeronRead(infifo,results, BUFFER_SIZE);
if (rstatus!'= HERON_IO_IN_PROGRESS)

{

printf("error from read\n");

exit(0);

}

Now the read and write happen at the same time, and hence both can complete.

The danger with using the waitio case, is that that function will block the processor completely. If you
have multiple tasks for example, a task that uses waitio will not be de-scheduled. For this reason it is
better to use the Semaphore model.

Semaphore example

To demonstrate how the semaphore model can be used in this case, there is a second example in the
source file semfifo_example.c.

Make another new HERON-API project like you did above, but this time use the C file
semfifo_example.c as the basis for the project.

This example uses 2 tasks and semaphores to signify when the transfers are complete. For this reason you
must modify the DSP/BIOS configuration before you can build the example.

Open the .cdb file in Code Composer and add another task. Set the function property of this task to be
_readtask (the underbar isimportant!)

Add two Semaphores, and rename then as “read0” and “writeQ”
Now you can build the example.

Remember to load the semfifo_example.out initially, but then to use the reset plug in to load the system.
As long as you use the same definitions for INFIFONO and OUTFIFONO as in the earlier example, the
same network file can be used as before. If not then you need to make the appropriate changes.

Y ou should be able to run this example and see :-

l — TR 1

Hello from HEROW-AFPT SEM fifo demo.
completed loop
completed loop
completed loop
completed loop
completed loop
completed loop
completed loop
completed loop

AT M Buid 1 Stdout / L4] |

ey IR I S S S T L T S e

In this case the tasks are being de-scheduled when the semaphore is not set, alowing the other task to run
until it too becomes de-schedul ed.

So now if we increase the BUFFER _SIZE definition to be 1024 and recompile, the example still runs.

This shows the advantage of using a semaphore model rather than a waitio model. There are other models
offered by HERON-API and DSP/BIOS, and ultimately you need to select the right model for your
application.

	Code Composer Studio.
	DSP/BIOS
	HERON-API
	Fifo_example
	Semaphore example

