

HUNT ENGINEERING is a trading style of HUNT ENGINEERING (U.K.) Ltd, Co Reg No 3333633
Directors P.Warnes & N.J.Warnes. Reg’d office 34 & 38 North St, Bridgwater, Somerset TA6 3YD. VAT Reg’d No GB 515 8449 31

HUNT ENGINEERING
Chestnut Court, Burton Row,

Brent Knoll, Somerset, TA9 4BP, UK
Tel: (+44) (0)1278 760188,
Fax: (+44) (0)1278 760199,

Email: sales@hunteng.co.uk
http://www.hunteng.co.uk
http://www.hunt-dsp.com

Using the C6201/C6701 timer as a clock divider.
Rev 1.0 P.Warnes 13-5-02

The C6201/C6701 processors have two 32 bit timers. They can be configured to count processor
clocks, or external events. They can drive an external pin of the device and or generate interrupts for
the processor.

DSP/BIOS uses one of the timers to provide periodic functions.

Uncommitted Module Interconnect (UMI) pins of the HERON module are intended for application
specific use. There are four identical UMI pins on the HERON module, which are simply bussed
together between the module slots of a Module Carrier card. This means that there are four signals that
can be used between modules, for any application specific purpose. They are not buffered at all so that
they have not in-built direction, but they are pulled up to +5v on the module carrier cards using a 10K
resistor. This resistor ensures that unconnected lines are kept at a high level. They are also brought to a
connector of the Module Carrier card to enable connection to external devices, or other HERON
module carrier cards.

HERON Processor modules are designed to allow a timer output of the Processor to drive any one of
the UMI pins. One use of this is to divide an external clock source, providing a divided version of it on
another UMI. This is demonstrated by this example.

History

Example revision 1.0

 2

Example software
The example that we supply consists of two C files for the DSP called timer2.c and demo.c. The
project needs to be built using Code Composer Studio and it uses the HERON-API software that has
been installed on your PC when you did the “install drivers and tools” from your CD.

Hardware setup
The example shows the use of timer1 (timer0 is used by DSP/BIOS) to accept a clock on UMI0, and
top drive UMI1 with a divided version of it. Although the HERON-API makes the use of the UMI
pins hardware independent, the timer used in the example is a C6201/C6701 timer number 1.
Different C6000 processors might have different addresses, or functions for timer control registers,
so you might have to alter this example to work with the processor type you actually have.

To reference the details of the timers for the processor your module has, please refer to the
peripherals reference guide provided by TI but also available on the HUNT ENGINEERING CD
under user manuals.

DSP/BIOS
DSP/BIOS is the multi-threading environment provided as part of the Code Composer development
Environment. It also provided services for configuring processor features such as hardware
interrupts and timers.

As it is included in Code Composer Studio, along with the Compile tools for the C6000, all users of
HERON hardware will be able to use it.

This example is configured and built using Code Composer and DSP/BIOS.

Starting
We assume that a user of this example has previously installed Code Composer and followed the
confidence checks and examples. They should also be familiar with using Code Composer.

Configuring the example
HUNT ENGINEERING provide several Code Composer Plug-in tools that allow you to make your
development faster. The first is one that sets up Code Composer ready for your hardware, so you
don’t need to configure device drivers etc and can be found from the Start!Programs!HUNT
ENGINEERING!AutoConfigure CCS.

We assume that this is already set up, but this plug in also copies cdb files etc into the correct
locations.

When you start with this example, simply copy the source files from the CD into a new directory.
Then start Code Composer and choose Tools!HUNT ENGINEERING!New Heron-API project.
This will guide you through setting up the project, and as long as you choose the name “demo” for
the project -will incorporate the demo.c file. Then all you need to do is to insert the other source file
into the project using Project!add files to project!timero.c

You can now build the demo by choosing Project ! re-build all. There should be no errors, or
warnings.

3

Manually Setting up the Project
For your information (or if there is some problem) here is how to set up the project yourself:-

Make sure that you have copied all of the .cdb files from the directory
%HEAPI_DIR%\heron_api\cmd into the directory C6000\bios\include under the directory where
your Code Composer Studio installation is (usually c:\ti).

In Code Composer, select ‘Project !new’ and choose the path and name for your project.

Select ‘File ! New ! DSP/BIOS Config’ and choose the correct .cdb file for your hardware. This
will have a name that uses your HERON module number and possibly an option that is available for
that module.

In the DSP/BIOS config tool, right click on Global properties, and check that the CLKOUT property
is set to the frequency of your processor module. This is used by DSP/BIOS to calculate the correct
settings for the timer period.

This .cdb file has some items set up which are for HERON-API. DO NOT CHANGE THESE!

For this example you need to set up a task that is called TSK0. Under its properties set its function
to be “_maintask”.

Use ‘File ! Save’ to save the cdb file to the project directory as the name you used to name the
project.

Saving the .cdb file wll generate a .cmd file, but that file will not place the sections heronapi_code
and heronapi_data. For this reason there is a .cmd file supplied by us, in the directory
%HEAPI_DIR%\heron_api\cmd that will be called by your heron module number and have
_bios.cmd at the end, i.e. heronx_bios.cmd. You need to copy this to your project directory.

Now add the source files (demo.c and timer2.c) to the project and the .cdb, and also the
heronx_bios.cmd. Edit the .cmd file that you have inserted and change the .cmd file that it includes
to replace the ***** by the name of your .cdb file. I.e. change *****cfg.cmd to be democfg.cmd or
whatever you have called the project.

Add the HERON_API library “herons.lib” from the directory %HEAPI_DIR%\heron_api\lib to the
project.

Go to Project Options and add %HEAPI_DIR%\heron_api\inc to the include path.

Select –o3 optimisation from the compiler optimisation menu.

The default .cdb file will actually place all code into external memory, and switch on the program
cache. This is a good general purpose setting, but might need ot be changed for your actual
application.

You can now build the demo by choosing Project ! re-build all. There should be no errors, or
warnings.

4

The example
The example simply uses the HERON-API to select which of the UMI pins are to be used, and sets
the bits in the timer1 control register to drive the TOUT1 pin of the processor, and to have a 50%
mark-space ratio.

Emulator halt!
When the C6000 timers are configured to count processor clock/4, as in the DSP/BIOS standard
configuration, they only count while the processor is not halted by the emulator.

This means that the timer will not free run while the processor is halted by a breakpoint or “halt”
option of Code Composer.

In the case when you are using an external clock source (as in this example) this is not an issue and
the timer continues to run even if the CPU is halted.

	Example software
	Hardware setup
	DSP/BIOS
	Starting
	Configuring the example
	The example
	Emulator halt!

